These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 34947796)

  • 1. Perfect Optical Absorbers by All-Dielectric Photonic Crystal/Metal Heterostructures Due to Optical Tamm State.
    Lu G; Zhang K; Zhao Y; Zhang L; Shang Z; Zhou H; Diao C; Zhou X
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perfect optical absorbers in a wide range of incidence by photonic heterostructures containing layered hyperbolic metamaterials.
    Lu G; Wu F; Zheng M; Chen C; Zhou X; Diao C; Liu F; Du G; Xue C; Jiang H; Chen H
    Opt Express; 2019 Feb; 27(4):5326-5336. PubMed ID: 30876132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental investigation of multiple near-perfect absorptions in sandwich structures containing thin metallic films.
    Liu B; Lu G; Cui L; Li J; Sun F; Liu F; Li Y; Yang T; Du G
    Opt Express; 2017 Jun; 25(12):13271-13277. PubMed ID: 28788862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband wide-angle multilayer absorber based on a broadband omnidirectional optical Tamm state.
    Wu F; Wu X; Xiao S; Liu G; Li H
    Opt Express; 2021 Jul; 29(15):23976-23987. PubMed ID: 34614651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Channel High-Performance Absorber Based on SiC-Photonic Crystal Heterostructure-SiC Structure.
    Han J; Jiang J; Wu T; Gao Y; Gao Y
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical nonlinearity enhancement in heterostructures with thick metallic film and truncated photonic crystals.
    Du GQ; Jiang HT; Wang ZS; Chen H
    Opt Lett; 2009 Mar; 34(5):578-80. PubMed ID: 19252557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonreciprocal Tamm plasmon absorber based on lossy epsilon-near-zero materials.
    Lu H; Zhu T; Zhang J; Liu HC; Shen KS; Zheng Y; Dong SQ; Xia SQ; Dong C; Li XK; Luo WY; Sun XL; Zhang XZ; Xue CH
    Opt Express; 2021 Jun; 29(12):17736-17745. PubMed ID: 34154050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of resonant perfect optical absorption in dielectric film supporting metallic grating structures.
    Chen X; Yan X; Li P; Mou Y; Wang W; Guan Z; Xu H
    Opt Express; 2016 Aug; 24(17):19435-47. PubMed ID: 27557221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitive singular-phase optical detection without phase measurements with Tamm plasmons.
    Boriskina SV; Tsurimaki Y
    J Phys Condens Matter; 2018 Jun; 30(22):224003. PubMed ID: 29667599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-Area Broadband Near-Perfect Absorption from a Thin Chalcogenide Film Coupled to Gold Nanoparticles.
    Cao T; Liu K; Lu L; Chui HC; Simpson RE
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):5176-5182. PubMed ID: 30632371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong coupling of optical interface modes in a 1D topological photonic crystal heterostructure/Ag hybrid system.
    Hu J; Liu W; Xie W; Zhang W; Yao E; Zhang Y; Zhan Q
    Opt Lett; 2019 Nov; 44(22):5642-5645. PubMed ID: 31730127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-channel perfect absorber based on a one-dimensional topological photonic crystal heterostructure with graphene.
    Wang X; Liang Y; Wu L; Guo J; Dai X; Xiang Y
    Opt Lett; 2018 Sep; 43(17):4256-4259. PubMed ID: 30160765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perfect absorber supported by optical Tamm states in plasmonic waveguide.
    Gong Y; Liu X; Lu H; Wang L; Wang G
    Opt Express; 2011 Sep; 19(19):18393-8. PubMed ID: 21935207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple responses of TPP-assisted near-perfect absorption in metal/Fibonacci quasiperiodic photonic crystal.
    Gong Y; Liu X; Wang L; Lu H; Wang G
    Opt Express; 2011 May; 19(10):9759-69. PubMed ID: 21643233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-slit assisted high-Q photonic resonant perfect absorbers.
    Liu X; Fu G; Liu G; Wang J; Yi Q; Yang H; Tan W; Liu Z
    Opt Express; 2021 Feb; 29(4):5270-5278. PubMed ID: 33726066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-perfect absorption by photonic crystals with a broadband and omnidirectional impedance-matching property.
    Luo J; Lai Y
    Opt Express; 2019 May; 27(11):15800-15811. PubMed ID: 31163771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband Terahertz Near-Perfect Absorbers.
    Cheng X; Huang R; Xu J; Xu X
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33352-33360. PubMed ID: 32526137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband Perfect Optical Absorption by Coupled Semiconductor Resonator-Based All-Dielectric Metasurface.
    Weng Z; Guo Y
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31013974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Narrow-Band Multi-Resonant Metamaterial in Near-IR.
    Ali F; Aksu S
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33202666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-channel graphene-based perfect absorbers utilizing Tamm plasmon and Fabry-Perot resonances.
    Orojloo MH; Jabbari M; Solooki Nejad G; Sohrabi F
    Opt Express; 2024 Feb; 32(5):8459-8472. PubMed ID: 38439501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.