These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34947801)

  • 1. The Fingerprints of Resonant Frequency for Atomic Vacancy Defect Identification in Graphene.
    Chu L; Shi J; Souza de Cursi E
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effects of Random Porosities in Resonant Frequencies of Graphene Based on the Monte Carlo Stochastic Finite Element Model.
    Chu L; Shi J; Yu Y; Souza De Cursi E
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34062825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Uncertainty Propagation for Carbon Atomic Interactions in Graphene under Resonant Vibration Based on Stochastic Finite Element Model.
    Shi J; Chu L; Ma C; Braun R
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Dynamics Analysis of Graphene Nanoelectromechanical Resonators Based on Vacancy Defects.
    Li W; Tian W
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoresonator vibrational behaviour analysis of single- and double-layer graphene with atomic vacancy and pinhole defects.
    Makwana M; Patel AM
    J Mol Model; 2023 Apr; 29(5):149. PubMed ID: 37074494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Buckling Analysis of Vacancy-Defected Graphene Sheets by the Stochastic Finite Element Method.
    Chu L; Shi J; Ben S
    Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30150542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibration Analysis of Vacancy Defected Graphene Sheets by Monte Carlo Based Finite Element Method.
    Chu L; Shi J; Souza de Cursi E
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 30004459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning-Based Detection of Graphene Defects with Atomic Precision.
    Zheng B; Gu GX
    Nanomicro Lett; 2020 Sep; 12(1):181. PubMed ID: 34138207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Vacancy Defects on the Vibration Frequency of Graphene Nanoribbons.
    Guo H; Wang J
    Nanomaterials (Basel); 2022 Feb; 12(5):. PubMed ID: 35269251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double-Vacancy Controlled Friction on Graphene: The Enhancement of Atomic Pinning.
    Shen B; Lin Q; Chen S; Huang Z; Ji Z; Cao A; Zhang Z
    Langmuir; 2019 Oct; 35(40):12898-12907. PubMed ID: 31513424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining charge state of graphene vacancy by noncontact atomic force microscopy and first-principles calculations.
    Liu Y; Weinert M; Li L
    Nanotechnology; 2015 Jan; 26(3):035702. PubMed ID: 25549100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic Simulations of Packing Structures, Local Stress and Mechanical Properties for One Silicon Lattice with Single Vacancy on Heating.
    Dai F; Zhao D; Zhang L
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34200276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The correlation between graphene characteristic parameters and resonant frequencies by Monte Carlo based stochastic finite element model.
    Chu L; Shi J; de Cursi ES
    Sci Rep; 2021 Nov; 11(1):22962. PubMed ID: 34824351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trapping of metal atoms in the defects on graphene.
    Tang Y; Yang Z; Dai X
    J Chem Phys; 2011 Dec; 135(22):224704. PubMed ID: 22168716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vacancy diffusion and coalescence in graphene directed by defect strain fields.
    Trevethan T; Latham CD; Heggie MI; Briddon PR; Rayson MJ
    Nanoscale; 2014 Mar; 6(5):2978-86. PubMed ID: 24487384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of defects on the intrinsic strength and stiffness of graphene.
    Zandiatashbar A; Lee GH; An SJ; Lee S; Mathew N; Terrones M; Hayashi T; Picu CR; Hone J; Koratkar N
    Nat Commun; 2014; 5():3186. PubMed ID: 24458268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic Defects and Doping of Monolayer NbSe
    Nguyen L; Komsa HP; Khestanova E; Kashtiban RJ; Peters JJ; Lawlor S; Sanchez AM; Sloan J; Gorbachev RV; Grigorieva IV; Krasheninnikov AV; Haigh SJ
    ACS Nano; 2017 Mar; 11(3):2894-2904. PubMed ID: 28195699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging Vacancy Defects in Single-Layer Chromium Triiodide.
    Zhang J; Guo Y; Li P; Wang J; Zhou S; Zhao J; Guo D; Zhong D
    J Phys Chem Lett; 2021 Mar; 12(9):2199-2205. PubMed ID: 33630596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic adsorption on graphene with a single vacancy: systematic DFT study through the periodic table of elements.
    Pašti IA; Jovanović A; Dobrota AS; Mentus SV; Johansson B; Skorodumova NV
    Phys Chem Chem Phys; 2018 Jan; 20(2):858-865. PubMed ID: 29238768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial Strengthening of Graphene/Aluminum Composites through Point Defects: A First-Principles Study.
    Zhang X; Wang S
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33804166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.