BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 34947952)

  • 1. Activation of the Hippo Pathway in
    Gupta A; Storey KB
    Life (Basel); 2021 Dec; 11(12):. PubMed ID: 34947952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of antioxidant systems in response to anoxia and reoxygenation in Rana sylvatica.
    Gupta A; Storey KB
    Comp Biochem Physiol B Biochem Mol Biol; 2020 Jun; 243-244():110436. PubMed ID: 32247058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment of transgenic lines to monitor and manipulate Yap/Taz-Tead activity in zebrafish reveals both evolutionarily conserved and divergent functions of the Hippo pathway.
    Miesfeld JB; Link BA
    Mech Dev; 2014 Aug; 133():177-88. PubMed ID: 24560909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting the Hippo Pathway and Cancer through the TEAD Family of Transcription Factors.
    Holden JK; Cunningham CN
    Cancers (Basel); 2018 Mar; 10(3):. PubMed ID: 29558384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of anoxic exposure on the nuclear factor of activated T cell (NFAT) transcription factors in the stress-tolerant wood frog.
    Al-Attar R; Storey KB
    Cell Biochem Funct; 2018 Dec; 36(8):420-430. PubMed ID: 30411386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osmolyte regulation by TonEBP/NFAT5 during anoxia-recovery and dehydration-rehydration stresses in the freeze-tolerant wood frog (
    Al-Attar R; Zhang Y; Storey KB
    PeerJ; 2017; 5():e2797. PubMed ID: 28133564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coordinated expression of Jumonji and AHCY under OCT transcription factor control to regulate gene methylation in wood frogs during anoxia.
    Gupta A; Storey KB
    Gene; 2021 Jul; 788():145671. PubMed ID: 33887369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation.
    Lin KC; Moroishi T; Meng Z; Jeong HS; Plouffe SW; Sekido Y; Han J; Park HW; Guan KL
    Nat Cell Biol; 2017 Jul; 19(8):996-1002. PubMed ID: 28752853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of MEF2 transcription factors in dehydration and anoxia survival in
    Hoyeck MP; Hadj-Moussa H; Storey KB
    PeerJ; 2017; 5():e4014. PubMed ID: 29134152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hippo pathway inhibition by blocking the YAP/TAZ-TEAD interface: a patent review.
    Crawford JJ; Bronner SM; Zbieg JR
    Expert Opin Ther Pat; 2018 Dec; 28(12):867-873. PubMed ID: 30482112
    [No Abstract]   [Full Text] [Related]  

  • 11. Reciprocal regulation of YAP/TAZ by the Hippo pathway and the Small GTPase pathway.
    Jang JW; Kim MK; Bae SC
    Small GTPases; 2020 Jul; 11(4):280-288. PubMed ID: 29457552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A "notch" in the cellular communication network in response to anoxia by wood frog (Rana sylvatica).
    Gupta A; Storey KB
    Cell Signal; 2022 May; 93():110305. PubMed ID: 35283291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA damage and repair responses to freezing and anoxia stresses in wood frogs, Rana sylvatica.
    Lung ZD; Storey KB
    J Therm Biol; 2022 Jul; 107():103274. PubMed ID: 35701025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Components of the Hippo Pathway in
    Unni M; Reddy PC; Pal M; Sagi I; Galande S
    Front Genet; 2021; 12():676182. PubMed ID: 34691138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis.
    Moroishi T; Park HW; Qin B; Chen Q; Meng Z; Plouffe SW; Taniguchi K; Yu FX; Karin M; Pan D; Guan KL
    Genes Dev; 2015 Jun; 29(12):1271-84. PubMed ID: 26109050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Second messenger and cAMP-dependent protein kinase responses to dehydration and anoxia stresses in frogs.
    Holden CP; Storey KB
    J Comp Physiol B; 1997 May; 167(4):305-12. PubMed ID: 9203370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity.
    Shimomura T; Miyamura N; Hata S; Miura R; Hirayama J; Nishina H
    Biochem Biophys Res Commun; 2014 Jan; 443(3):917-23. PubMed ID: 24380865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The emerging role of Hippo signaling pathway in regulating osteoclast formation.
    Yang W; Han W; Qin A; Wang Z; Xu J; Qian Y
    J Cell Physiol; 2018 Jun; 233(6):4606-4617. PubMed ID: 29219182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Hippo Pathway Component TAZ Promotes Immune Evasion in Human Cancer through PD-L1.
    Janse van Rensburg HJ; Azad T; Ling M; Hao Y; Snetsinger B; Khanal P; Minassian LM; Graham CH; Rauh MJ; Yang X
    Cancer Res; 2018 Mar; 78(6):1457-1470. PubMed ID: 29339539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hippo Component TAZ Functions as a Co-repressor and Negatively Regulates ΔNp63 Transcription through TEA Domain (TEAD) Transcription Factor.
    Valencia-Sama I; Zhao Y; Lai D; Janse van Rensburg HJ; Hao Y; Yang X
    J Biol Chem; 2015 Jul; 290(27):16906-17. PubMed ID: 25995450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.