BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 34947972)

  • 1. DFMO Improves Survival and Increases Immune Cell Infiltration in Association with MYC Downregulation in the Pancreatic Tumor Microenvironment.
    Nakkina SP; Gitto SB; Beardsley JM; Pandey V; Rohr MW; Parikh JG; Phanstiel O; Altomare DA
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34947972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The discovery of indolone GW5074 during a comprehensive search for non-polyamine-based polyamine transport inhibitors.
    Dobrovolskaite A; Madan M; Pandey V; Altomare DA; Phanstiel O
    Int J Biochem Cell Biol; 2021 Sep; 138():106038. PubMed ID: 34252566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eflornithine (DFMO) prevents progression of pancreatic cancer by modulating ornithine decarboxylase signaling.
    Mohammed A; Janakiram NB; Madka V; Ritchie RL; Brewer M; Biddick L; Patlolla JM; Sadeghi M; Lightfoot S; Steele VE; Rao CV
    Cancer Prev Res (Phila); 2014 Dec; 7(12):1198-209. PubMed ID: 25248858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Difluoromethylornithine Combined with a Polyamine Transport Inhibitor Is Effective against Gemcitabine Resistant Pancreatic Cancer.
    Gitto SB; Pandey V; Oyer JL; Copik AJ; Hogan FC; Phanstiel O; Altomare DA
    Mol Pharm; 2018 Feb; 15(2):369-376. PubMed ID: 29299930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-cell RNA sequencing reveals compartmental remodeling of tumor-infiltrating immune cells induced by anti-CD47 targeting in pancreatic cancer.
    Pan Y; Lu F; Fei Q; Yu X; Xiong P; Yu X; Dang Y; Hou Z; Lin W; Lin X; Zhang Z; Pan M; Huang H
    J Hematol Oncol; 2019 Nov; 12(1):124. PubMed ID: 31771616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C4b-binding protein α-chain enhances antitumor immunity by facilitating the accumulation of tumor-infiltrating lymphocytes in the tumor microenvironment in pancreatic cancer.
    Sasaki K; Takano S; Tomizawa S; Miyahara Y; Furukawa K; Takayashiki T; Kuboki S; Takada M; Ohtsuka M
    J Exp Clin Cancer Res; 2021 Jun; 40(1):212. PubMed ID: 34167573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased Serotonin Signaling Contributes to the Warburg Effect in Pancreatic Tumor Cells Under Metabolic Stress and Promotes Growth of Pancreatic Tumors in Mice.
    Jiang SH; Li J; Dong FY; Yang JY; Liu DJ; Yang XM; Wang YH; Yang MW; Fu XL; Zhang XX; Li Q; Pang XF; Huo YM; Li J; Zhang JF; Lee HY; Lee SJ; Qin WX; Gu JR; Sun YW; Zhang ZG
    Gastroenterology; 2017 Jul; 153(1):277-291.e19. PubMed ID: 28315323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DHA-SBT-1214 Taxoid Nanoemulsion and Anti-PD-L1 Antibody Combination Therapy Enhances Antitumor Efficacy in a Syngeneic Pancreatic Adenocarcinoma Model.
    Ahmad G; Mackenzie GG; Egan J; Amiji MM
    Mol Cancer Ther; 2019 Nov; 18(11):1961-1972. PubMed ID: 31439714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer.
    Mace TA; Shakya R; Pitarresi JR; Swanson B; McQuinn CW; Loftus S; Nordquist E; Cruz-Monserrate Z; Yu L; Young G; Zhong X; Zimmers TA; Ostrowski MC; Ludwig T; Bloomston M; Bekaii-Saab T; Lesinski GB
    Gut; 2018 Feb; 67(2):320-332. PubMed ID: 27797936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pancreatic Cancer Chemotherapy Is Potentiated by Induction of Tertiary Lymphoid Structures in Mice.
    Delvecchio FR; Fincham REA; Spear S; Clear A; Roy-Luzarraga M; Balkwill FR; Gribben JG; Bombardieri M; Hodivala-Dilke K; Capasso M; Kocher HM
    Cell Mol Gastroenterol Hepatol; 2021; 12(5):1543-1565. PubMed ID: 34252585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ERK Inhibition Improves Anti-PD-L1 Immune Checkpoint Blockade in Preclinical Pancreatic Ductal Adenocarcinoma.
    Henry KE; Mack KN; Nagle VL; Cornejo M; Michel AO; Fox IL; Davydova M; Dilling TR; Pillarsetty N; Lewis JS
    Mol Cancer Ther; 2021 Oct; 20(10):2026-2034. PubMed ID: 34349003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of c-Myc by 10058-F4 induces growth arrest and chemosensitivity in pancreatic ductal adenocarcinoma.
    Zhang M; Fan HY; Li SC
    Biomed Pharmacother; 2015 Jul; 73():123-8. PubMed ID: 26211592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PIN1 Maintains Redox Balance via the c-Myc/NRF2 Axis to Counteract Kras-Induced Mitochondrial Respiratory Injury in Pancreatic Cancer Cells.
    Liang C; Shi S; Liu M; Qin Y; Meng Q; Hua J; Ji S; Zhang Y; Yang J; Xu J; Ni Q; Li M; Yu X
    Cancer Res; 2019 Jan; 79(1):133-145. PubMed ID: 30355620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macrophage PI3Kγ Drives Pancreatic Ductal Adenocarcinoma Progression.
    Kaneda MM; Cappello P; Nguyen AV; Ralainirina N; Hardamon CR; Foubert P; Schmid MC; Sun P; Mose E; Bouvet M; Lowy AM; Valasek MA; Sasik R; Novelli F; Hirsch E; Varner JA
    Cancer Discov; 2016 Aug; 6(8):870-85. PubMed ID: 27179037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Urolithin A, a Novel Natural Compound to Target PI3K/AKT/mTOR Pathway in Pancreatic Cancer.
    Totiger TM; Srinivasan S; Jala VR; Lamichhane P; Dosch AR; Gaidarski AA; Joshi C; Rangappa S; Castellanos J; Vemula PK; Chen X; Kwon D; Kashikar N; VanSaun M; Merchant NB; Nagathihalli NS
    Mol Cancer Ther; 2019 Feb; 18(2):301-311. PubMed ID: 30404927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Therapeutic effects of an anti-Myc drug on mouse pancreatic cancer.
    Stellas D; Szabolcs M; Koul S; Li Z; Polyzos A; Anagnostopoulos C; Cournia Z; Tamvakopoulos C; Klinakis A; Efstratiadis A
    J Natl Cancer Inst; 2014 Dec; 106(12):. PubMed ID: 25306215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exclusion of T Cells From Pancreatic Carcinomas in Mice Is Regulated by Ly6C(low) F4/80(+) Extratumoral Macrophages.
    Beatty GL; Winograd R; Evans RA; Long KB; Luque SL; Lee JW; Clendenin C; Gladney WL; Knoblock DM; Guirnalda PD; Vonderheide RH
    Gastroenterology; 2015 Jul; 149(1):201-10. PubMed ID: 25888329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concepts to Target MYC in Pancreatic Cancer.
    Wirth M; Mahboobi S; Krämer OH; Schneider G
    Mol Cancer Ther; 2016 Aug; 15(8):1792-8. PubMed ID: 27406986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibiting NR5A2 targets stemness in pancreatic cancer by disrupting SOX2/MYC signaling and restoring chemosensitivity.
    Zheng Q; Tang J; Aicher A; Bou Kheir T; Sabanovic B; Ananthanarayanan P; Reina C; Chen M; Gu JM; He B; Alcala S; Behrens D; Lawlo RT; Scarpa A; Hidalgo M; Sainz B; Sancho P; Heeschen C
    J Exp Clin Cancer Res; 2023 Nov; 42(1):323. PubMed ID: 38012687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MYC- and MIZ1-Dependent Vesicular Transport of Double-Strand RNA Controls Immune Evasion in Pancreatic Ductal Adenocarcinoma.
    Krenz B; Gebhardt-Wolf A; Ade CP; Gaballa A; Roehrig F; Vendelova E; Baluapuri A; Eilers U; Gallant P; D'Artista L; Wiegering A; Gasteiger G; Rosenfeldt MT; Bauer S; Zender L; Wolf E; Eilers M
    Cancer Res; 2021 Aug; 81(16):4242-4256. PubMed ID: 34145038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.