These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 34947980)

  • 61. A Lipidomics Atlas of Selected Sphingolipids in Multiple Mouse Nervous System Regions.
    Wang C; Palavicini JP; Han X
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768790
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Widespread tissue distribution and synthetic pathway of polyunsaturated C24:2 sphingolipids in mammals.
    Edagawa M; Sawai M; Ohno Y; Kihara A
    Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Dec; 1863(12):1441-1448. PubMed ID: 30251650
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Chlamydia trachomatis-infected human cells convert ceramide to sphingomyelin without sphingomyelin synthases 1 and 2.
    Tachida Y; Kumagai K; Sakai S; Ando S; Yamaji T; Hanada K
    FEBS Lett; 2020 Feb; 594(3):519-529. PubMed ID: 31596951
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Inhibitors of the sphingomyelin cycle: Sphingomyelin synthases and sphingomyelinases.
    Adada M; Luberto C; Canals D
    Chem Phys Lipids; 2016 May; 197():45-59. PubMed ID: 26200918
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance.
    Ponnusamy S; Meyers-Needham M; Senkal CE; Saddoughi SA; Sentelle D; Selvam SP; Salas A; Ogretmen B
    Future Oncol; 2010 Oct; 6(10):1603-24. PubMed ID: 21062159
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Intellectual-disability-associated mutations in the ceramide transport protein gene CERT1 lead to aberrant function and subcellular distribution.
    Tamura N; Sakai S; Martorell L; Colomé R; Mizuike A; Goto A; Ortigoza-Escobar JD; Hanada K
    J Biol Chem; 2021 Nov; 297(5):101338. PubMed ID: 34688657
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cancer and sphingolipid storage disease therapy using novel synthetic analogs of sphingolipids.
    Gatt S; Dagan A
    Chem Phys Lipids; 2012 May; 165(4):462-74. PubMed ID: 22387097
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Sphingolipid metabolic flow controls phosphoinositide turnover at the
    Capasso S; Sticco L; Rizzo R; Pirozzi M; Russo D; Dathan NA; Campelo F; van Galen J; Hölttä-Vuori M; Turacchio G; Hausser A; Malhotra V; Riezman I; Riezman H; Ikonen E; Luberto C; Parashuraman S; Luini A; D'Angelo G
    EMBO J; 2017 Jun; 36(12):1736-1754. PubMed ID: 28495678
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Establishment of HeLa cell mutants deficient in sphingolipid-related genes using TALENs.
    Yamaji T; Hanada K
    PLoS One; 2014; 9(2):e88124. PubMed ID: 24498430
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Plant Sphingolipid Metabolism and Function.
    Luttgeharm KD; Kimberlin AN; Cahoon EB
    Subcell Biochem; 2016; 86():249-86. PubMed ID: 27023239
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Cancer treatment strategies targeting sphingolipid metabolism.
    Oskouian B; Saba JD
    Adv Exp Med Biol; 2010; 688():185-205. PubMed ID: 20919655
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Novel agents targeting bioactive sphingolipids for the treatment of cancer.
    Adan-Gokbulut A; Kartal-Yandim M; Iskender G; Baran Y
    Curr Med Chem; 2013; 20(1):108-22. PubMed ID: 23244584
    [TBL] [Abstract][Full Text] [Related]  

  • 73. p53 and regulation of bioactive sphingolipids.
    Heffernan-Stroud LA; Obeid LM
    Adv Enzyme Regul; 2011; 51(1):219-28. PubMed ID: 21035490
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The role of ceramide in regulating endoplasmic reticulum function.
    Zelnik ID; Ventura AE; Kim JL; Silva LC; Futerman AH
    Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Jan; 1865(1):158489. PubMed ID: 31233888
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ceramide Transporter CERT Is Involved in Muscle Insulin Signaling Defects Under Lipotoxic Conditions.
    Bandet CL; Mahfouz R; Véret J; Sotiropoulos A; Poirier M; Giussani P; Campana M; Philippe E; Blachnio-Zabielska A; Ballaire R; Le Liepvre X; Bourron O; Berkeš D; Górski J; Ferré P; Le Stunff H; Foufelle F; Hajduch E
    Diabetes; 2018 Jul; 67(7):1258-1271. PubMed ID: 29759974
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Ether lipid and sphingolipid expression patterns are estrogen receptor-dependently altered in breast cancer cells.
    Hahnefeld L; Gruber L; Schömel N; Fischer C; Mattjus P; Gurke R; Beretta M; Ferreirós N; Geisslinger G; Wegner MS
    Int J Biochem Cell Biol; 2020 Oct; 127():105834. PubMed ID: 32827762
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development.
    Elwell CA; Jiang S; Kim JH; Lee A; Wittmann T; Hanada K; Melancon P; Engel JN
    PLoS Pathog; 2011 Sep; 7(9):e1002198. PubMed ID: 21909260
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Chlamydial Infection-Dependent Synthesis of Sphingomyelin as a Novel Anti-Chlamydial Target of Ceramide Mimetic Compounds.
    Kumagai K; Sakai S; Ueno M; Kataoka M; Kobayashi S; Hanada K
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499025
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The role of the 'sphingoid motif' in shaping the molecular interactions of sphingolipids in biomembranes.
    Dingjan T; Futerman AH
    Biochim Biophys Acta Biomembr; 2021 Nov; 1863(11):183701. PubMed ID: 34302797
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [New paradigm of membrane transport: ER-to-Golgi trafficking of the lipid ceramide by a molecular extraction and transfer mechanism].
    Hanada K
    Nihon Saikingaku Zasshi; 2005 Nov; 60(4):531-7. PubMed ID: 16372761
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.