BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34948018)

  • 21. Tumor suppressive miR-99b-5p as an epigenomic regulator mediating mTOR/AR/SMARCD1 signaling axis in aggressive prostate cancer.
    Waseem M; Gujrati H; Wang BD
    Front Oncol; 2023; 13():1184186. PubMed ID: 38023145
    [TBL] [Abstract][Full Text] [Related]  

  • 22.
    Choudhry M; Gamallat Y; Khosh Kish E; Seyedi S; Gotto G; Ghosh S; Bismar TA
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047027
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Palmitoyl acyltransferase ZDHHC7 inhibits androgen receptor and suppresses prostate cancer.
    Lin Z; Agarwal S; Tan S; Shi H; Lu X; Tao Z; Dong X; Wu X; Zhao JC; Yu J
    Oncogene; 2023 Jun; 42(26):2126-2138. PubMed ID: 37198397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monoamine oxidase A (MAOA): A promising target for prostate cancer therapy.
    Han H; Li H; Ma Y; Zhao Z; An Q; Zhao J; Shi C
    Cancer Lett; 2023 Jun; 563():216188. PubMed ID: 37076041
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Constitutively active androgen receptor supports the metastatic phenotype of endocrine-resistant hormone receptor-positive breast cancer.
    Bahnassy S; Thangavel H; Quttina M; Khan AF; Dhanyalayam D; Ritho J; Karami S; Ren J; Bawa-Khalfe T
    Cell Commun Signal; 2020 Sep; 18(1):154. PubMed ID: 32948192
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tannic acid inhibits lipid metabolism and induce ROS in prostate cancer cells.
    Nagesh PKB; Chowdhury P; Hatami E; Jain S; Dan N; Kashyap VK; Chauhan SC; Jaggi M; Yallapu MM
    Sci Rep; 2020 Jan; 10(1):980. PubMed ID: 31969643
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Mutational and Transcriptional Landscapes of Speckle-Type POZ Protein (SPOP) and Androgen Receptor (AR) in a Single-Center pT3 Prostatectomy Cohort.
    Eryilmaz IE; Vuruskan BA; Kaygisiz O; Cecener G; Egeli U; Vuruskan H
    J Environ Pathol Toxicol Oncol; 2024; 43(1):15-29. PubMed ID: 37824367
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lipid degradation promotes prostate cancer cell survival.
    Itkonen HM; Brown M; Urbanucci A; Tredwell G; Ho Lau C; Barfeld S; Hart C; Guldvik IJ; Takhar M; Heemers HV; Erho N; Bloch K; Davicioni E; Derua R; Waelkens E; Mohler JL; Clarke N; Swinnen JV; Keun HC; Rekvig OP; Mills IG
    Oncotarget; 2017 Jun; 8(24):38264-38275. PubMed ID: 28415728
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High expression of centromere protein A and its molecular mechanism and clinical significance in prostate cancer: A study based on data mining and immunohistochemistry.
    Jiang FC; Zhai GQ; Liu JL; Wang RG; Yang YP; Murugesan H; Yu XX; Du XF; He J; Feng ZB; Pan SL; Chen G; Li SH; Huang ZG
    IET Syst Biol; 2023 Oct; 17(5):245-258. PubMed ID: 37488766
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Caveolin-1 regulates hormone resistance through lipid synthesis, creating novel therapeutic opportunities for castration-resistant prostate cancer.
    Karantanos T; Karanika S; Wang J; Yang G; Dobashi M; Park S; Ren C; Li L; Basourakos SP; Hoang A; Efstathiou E; Wang X; Troncoso P; Titus M; Broom B; Kim J; Corn PG; Logothetis CJ; Thompson TC
    Oncotarget; 2016 Jul; 7(29):46321-46334. PubMed ID: 27331874
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessing the Potential of Small Peptides for Altering Expression Levels of the Iron-Regulatory Genes
    Currie C; Bjerknes C; Myklebust TÅ; Framroze B
    Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37894914
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alternations of gene expression in PI3K and AR pathways and DNA methylation features contribute to metastasis of prostate cancer.
    Zhao Y; Hu X; Yu H; Liu X; Sun H; Shao C
    Cell Mol Life Sci; 2022 Jul; 79(8):436. PubMed ID: 35864178
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure based docking and biological evaluation towards exploring potential anti-cancerous and apoptotic activity of 6-Gingerol against human prostate carcinoma cells.
    Khan H; Azad I; Arif Z; Parveen S; Kumar S; Rais J; Ansari JA; Nasibullah M; Kumar S; Arshad M
    BMC Complement Med Ther; 2024 Jan; 24(1):8. PubMed ID: 38166796
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A potent new-scaffold androgen receptor antagonist discovered on the basis of a MIEC-SVM model.
    Wang XY; Chai X; Shan LH; Xu XH; Xu L; Hou TJ; Sun HY; Li D
    Acta Pharmacol Sin; 2024 May; ():. PubMed ID: 38750073
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Loss of SYNCRIP unleashes APOBEC-driven mutagenesis, tumor heterogeneity, and AR-targeted therapy resistance in prostate cancer.
    Li X; Wang Y; Deng S; Zhu G; Wang C; Johnson NA; Zhang Z; Tirado CR; Xu Y; Metang LA; Gonzalez J; Mukherji A; Ye J; Yang Y; Peng W; Tang Y; Hofstad M; Xie Z; Yoon H; Chen L; Liu X; Chen S; Zhu H; Strand D; Liang H; Raj G; He HH; Mendell JT; Li B; Wang T; Mu P
    Cancer Cell; 2023 Aug; 41(8):1427-1449.e12. PubMed ID: 37478850
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cyclosporin A inhibits prostate cancer growth through suppression of E2F8 transcription factor in a MELK‑dependent manner.
    Lee DY; Lee S; Kim YS; Park S; Bae SM; Cho EA; Park EJ; Park HH; Kim SY; So I; Chun JN; Jeon JH
    Oncol Rep; 2023 Dec; 50(6):. PubMed ID: 37888771
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proliferation and migration of PC-3 prostate cancer cells is counteracted by PPARγ-cladosporol binding-mediated apoptosis and a decreased lipid biosynthesis and accumulation.
    Rapuano R; Riccio A; Mercuri A; Madera JR; Dallavalle S; Moricca S; Lupo A
    Biochem Pharmacol; 2024 Apr; 222():116097. PubMed ID: 38428827
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MBTPS2 acts as a regulator of lipogenesis and cholesterol synthesis through SREBP signalling in prostate cancer.
    Tibbo AJ; Hartley A; Vasan R; Shaw R; Galbraith L; Mui E; Leung HY; Ahmad I
    Br J Cancer; 2023 Jun; 128(11):1991-1999. PubMed ID: 36991255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic convergence on lipogenesis in RAS, BCR-ABL, and MYC-driven lymphoid malignancies.
    Liefwalker DF; Ryan M; Wang Z; Pathak KV; Plaisier S; Shah V; Babra B; Dewson GS; Lai IK; Mosley AR; Fueger PT; Casey SC; Jiang L; Pirrotte P; Swaminathan S; Sears RC
    Cancer Metab; 2021 Aug; 9(1):31. PubMed ID: 34399819
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elucidating molecular and cellular targets and the antiprostate cancer potentials of promising phytochemicals: a review.
    Khan H; Rais J; Afzal M; Arshad M
    Anticancer Drugs; 2023 Sep; 34(8):910-915. PubMed ID: 36995078
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.