These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 34948044)
1. A Deep Exon Cryptic Splice Site Promotes Aberrant Intron Retention in a Von Willebrand Disease Patient. Conboy JG Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948044 [TBL] [Abstract][Full Text] [Related]
2. Combined partial exon skipping and cryptic splice site activation as a new molecular mechanism for recessive type 1 von Willebrand disease. Gallinaro L; Sartorello F; Pontara E; Cattini MG; Bertomoro A; Bartoloni L; Pagnan A; Casonato A Thromb Haemost; 2006 Dec; 96(6):711-6. PubMed ID: 17139363 [TBL] [Abstract][Full Text] [Related]
3. Intron retention resulting from a silent mutation in the VWF gene that structurally influences the 5' splice site. Yadegari H; Biswas A; Akhter MS; Driesen J; Ivaskevicius V; Marquardt N; Oldenburg J Blood; 2016 Oct; 128(17):2144-2152. PubMed ID: 27543438 [TBL] [Abstract][Full Text] [Related]
4. Characterization of aberrant splicing of von Willebrand factor in von Willebrand disease: an underrecognized mechanism. Hawke L; Bowman ML; Poon MC; Scully MF; Rivard GE; James PD Blood; 2016 Jul; 128(4):584-93. PubMed ID: 27317792 [TBL] [Abstract][Full Text] [Related]
6. A novel family with recessive von Willebrand disease due to compound heterozygosity for a splice site mutation and a missense mutation in the von Willebrand factor gene. Castaman G; Novella E; Castiglia E; Eikenboom JC; Rodeghiero F Thromb Res; 2002 Jan; 105(2):135-8. PubMed ID: 11958803 [TBL] [Abstract][Full Text] [Related]
7. Unraveling the molecular basis underlying nine putative splice site variants of von Willebrand factor. Liang Q; Lin X; Wu X; Shao Y; Chen C; Dai J; Lu Y; Wu W; Ding Q; Wang X Hum Mutat; 2022 Feb; 43(2):215-227. PubMed ID: 34882887 [TBL] [Abstract][Full Text] [Related]
8. A synonymous (c.3390C>T) or a splice-site (c.3380-2A>G) mutation causes exon 26 skipping in four patients with von Willebrand disease (2A/IIE). Pagliari MT; Baronciani L; Garcìa Oya I; Solimando M; La Marca S; Cozzi G; Stufano F; Canciani MT; Peyvandi F J Thromb Haemost; 2013 Jul; 11(7):1251-9. PubMed ID: 23621778 [TBL] [Abstract][Full Text] [Related]
9. In vitro splicing analysis showed that availability of a cryptic splice site is not a determinant for alternative splicing patterns caused by +1G-->A mutations in introns of the dystrophin gene. Habara Y; Takeshima Y; Awano H; Okizuka Y; Zhang Z; Saiki K; Yagi M; Matsuo M J Med Genet; 2009 Aug; 46(8):542-7. PubMed ID: 19001018 [TBL] [Abstract][Full Text] [Related]
10. Severe, recessive type 1 is a discrete form of von Willebrand disease: the lesson learned from the c.1534-3C>A von Willebrand factor mutation. Casonato A; Cattini MG; Barbon G; Daidone V; Pontara E Thromb Res; 2015 Sep; 136(3):682-6. PubMed ID: 26251079 [TBL] [Abstract][Full Text] [Related]
11. Founder von Willebrand factor haplotype associated with type 1 von Willebrand disease. O'Brien LA; James PD; Othman M; Berber E; Cameron C; Notley CR; Hegadorn CA; Sutherland JJ; Hough C; Rivard GE; O'Shaunessey D; Lillicrap D; Blood; 2003 Jul; 102(2):549-57. PubMed ID: 12649144 [TBL] [Abstract][Full Text] [Related]
12. A common splice site mutation is shared by two families with different type 2N von Willebrand disease mutations. Nesbitt IM; Hampton KK; Preston FE; Peake IR; Goodeve AC Thromb Haemost; 1999 Sep; 82(3):1061-4. PubMed ID: 10494764 [TBL] [Abstract][Full Text] [Related]
13. Mutation distribution in the von Willebrand factor gene related to the different von Willebrand disease (VWD) types in a cohort of VWD patients. Yadegari H; Driesen J; Pavlova A; Biswas A; Hertfelder HJ; Oldenburg J Thromb Haemost; 2012 Oct; 108(4):662-71. PubMed ID: 22871923 [TBL] [Abstract][Full Text] [Related]
14. Cryptic non-canonical splice site activation is part of the mechanism that abolishes multimer organization in the c.2269_2270del von Willebrand factor. Daidone V; Galletta E; De Marco L; Casonato A Haematologica; 2020 Apr; 105(4):1120-1128. PubMed ID: 31320553 [TBL] [Abstract][Full Text] [Related]
15. An assessment of the pathogenic significance of the R924Q von Willebrand factor substitution. Berber E; James PD; Hough C; Lillicrap D J Thromb Haemost; 2009 Oct; 7(10):1672-9. PubMed ID: 19624459 [TBL] [Abstract][Full Text] [Related]
16. Computational analysis of splicing errors and mutations in human transcripts. Kurmangaliyev YZ; Gelfand MS BMC Genomics; 2008 Jan; 9():13. PubMed ID: 18194514 [TBL] [Abstract][Full Text] [Related]
17. A noncanonical splicing variant c.875-5 T > G in von Willebrand factor causes in-frame exon skipping and type 2A von Willebrand disease. Liang Q; Zhang Z; Ding B; Shao Y; Ding Q; Dai J; Hu X; Wu W; Wang X Thromb Res; 2024 Apr; 236():51-60. PubMed ID: 38387303 [TBL] [Abstract][Full Text] [Related]
18. An important class of intron retention events in human erythroblasts is regulated by cryptic exons proposed to function as splicing decoys. Parra M; Booth BW; Weiszmann R; Yee B; Yeo GW; Brown JB; Celniker SE; Conboy JG RNA; 2018 Sep; 24(9):1255-1265. PubMed ID: 29959282 [TBL] [Abstract][Full Text] [Related]
19. Global control of aberrant splice-site activation by auxiliary splicing sequences: evidence for a gradient in exon and intron definition. Královicová J; Vorechovsky I Nucleic Acids Res; 2007; 35(19):6399-413. PubMed ID: 17881373 [TBL] [Abstract][Full Text] [Related]
20. Cryptic splice activation but not exon skipping is observed in minigene assays of dystrophin c.9361+1G>A mutation identified by NGS. Niba ETE; Nishida A; Tran VK; Vu DC; Matsumoto M; Awano H; Lee T; Takeshima Y; Nishio H; Matsuo M J Hum Genet; 2017 Apr; 62(5):531-537. PubMed ID: 28100912 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]