BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34948070)

  • 61. Synthesis and electrochemical and biological studies of novel coumarin-chalcone hybrid compounds.
    Pérez-Cruz F; Vazquez-Rodriguez S; Matos MJ; Herrera-Morales A; Villamena FA; Das A; Gopalakrishnan B; Olea-Azar C; Santana L; Uriarte E
    J Med Chem; 2013 Aug; 56(15):6136-45. PubMed ID: 23859213
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Free radical scavenging activity of novel thiazolidine-2,4-dione derivatives.
    Berczyński P; Kruk I; Piechowska T; Ceylan-Unlusoy M; Bozdağ-Dündar O; Aboul-Enein HY
    Luminescence; 2013; 28(6):900-4. PubMed ID: 23225772
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Free radical scavenger properties of α-mangostin: thermodynamics and kinetics of HAT and RAF mechanisms.
    Martínez A; Galano A; Vargas R
    J Phys Chem B; 2011 Nov; 115(43):12591-8. PubMed ID: 21936544
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Free radical scavenging potency of ellagic acid and its derivatives in multiple H
    Zheng YZ; Fu ZM; Deng G; Guo R; Chen DF
    Phytochemistry; 2020 Dec; 180():112517. PubMed ID: 32950773
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Theoretical study on the radical scavenging activity and mechanism of four kinds of Gnetin molecule.
    Shang Y; Li X; Li Z; Zhou J; Qu L; Chen K
    Food Chem; 2022 Jun; 378():131975. PubMed ID: 35033703
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Free radical scavenging activity of morin 2'-O(-) phenoxide anion.
    Marković Z; Milenković D; Dorović J; Dimitrić Marković JM; Stepanić V; Lučić B; Amić D
    Food Chem; 2012 Dec; 135(3):2070-7. PubMed ID: 22953958
    [TBL] [Abstract][Full Text] [Related]  

  • 67. PM6 study of free radical scavenging mechanisms of flavonoids: why does O-H bond dissociation enthalpy effectively represent free radical scavenging activity?
    Amić D; Stepanić V; Lučić B; Marković Z; Dimitrić Marković JM
    J Mol Model; 2013 Jun; 19(6):2593-603. PubMed ID: 23479282
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Antioxidative Action of Ellagic Acid-A Kinetic DFT Study.
    Tošović J; Bren U
    Antioxidants (Basel); 2020 Jul; 9(7):. PubMed ID: 32640518
    [TBL] [Abstract][Full Text] [Related]  

  • 69. One-pot synthesis and radical scavenging activity of novel polyhydroxylated 3-arylcoumarins.
    Svinyarov I; Bogdanov MG
    Eur J Med Chem; 2014 May; 78():198-206. PubMed ID: 24681984
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Synthesis, characterization and SAR studies of bis(imino)pyridines as antioxidants, acetylcholinesterase inhibitors and antimicrobial agents.
    Milošević MD; Marinković AD; Petrović P; Klaus A; Nikolić MG; Prlainović NŽ; Cvijetić IN
    Bioorg Chem; 2020 Sep; 102():104073. PubMed ID: 32693308
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Antiradical Properties of N-Oxide Surfactants-Two in One.
    Lewińska A; Kulbacka J; Domżał-Kędzia M; Witwicki M
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360806
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Design and synthesis of coumarin-3-acylamino derivatives to scavenge radicals and to protect DNA.
    Yang Y; Liu QW; Shi Y; Song ZG; Jin YH; Liu ZQ
    Eur J Med Chem; 2014 Sep; 84():1-7. PubMed ID: 25011038
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The antioxidative activity of piceatannol and its different derivatives: Antioxidative mechanism analysis.
    Zheng YZ; Chen DF; Deng G; Guo R; Fu ZM
    Phytochemistry; 2018 Dec; 156():184-192. PubMed ID: 30312934
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Antioxidant activity of erlotinib and gefitinib: theoretical and experimental insights.
    K P SH; Babu TD; C M P; Joshy G; Mathew D; Thayyil MS
    Free Radic Res; 2022 Feb; 56(2):196-208. PubMed ID: 35514158
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Flavones' and Flavonols' Antiradical Structure-Activity Relationship-A Quantum Chemical Study.
    Spiegel M; Andruniów T; Sroka Z
    Antioxidants (Basel); 2020 May; 9(6):. PubMed ID: 32471289
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Scavenging of hydroxyl, methoxy, and nitrogen dioxide free radicals by some methylated isoflavones.
    Tiwari MK; Mishra PC
    J Mol Model; 2018 Sep; 24(10):287. PubMed ID: 30242489
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A physicochemical examination of the free radical scavenging activity of Trolox: mechanism, kinetics and influence of the environment.
    Alberto ME; Russo N; Grand A; Galano A
    Phys Chem Chem Phys; 2013 Apr; 15(13):4642-50. PubMed ID: 23423333
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Free-radical scavenging by tryptophan and its metabolites through electron transfer based processes.
    Pérez-González A; Alvarez-Idaboy JR; Galano A
    J Mol Model; 2015 Aug; 21(8):213. PubMed ID: 26224603
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Antiradical Properties of trans-2-(4-substituted-styryl)-thiophene.
    Gusain A; Kumar N; Kumar J; Pandey G; Hota PK
    J Fluoresc; 2021 Jan; 31(1):51-61. PubMed ID: 33057974
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Antioxidant and Anticancer Properties of Functionalized Ferrocene with Hydroxycinnamate Derivatives-An Integrated Experimental and Theoretical Study.
    Tabrizi L; Nguyen TLA; Tran HDT; Pham MQ; Dao DQ
    J Chem Inf Model; 2020 Dec; 60(12):6185-6203. PubMed ID: 33233887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.