These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 34948229)

  • 1. Targeting Mitochondrial OXPHOS and Their Regulatory Signals in Prostate Cancers.
    Chen CL; Lin CY; Kung HJ
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting the Mitochondrial Metabolic Network: A Promising Strategy in Cancer Treatment.
    Frattaruolo L; Brindisi M; Curcio R; Marra F; Dolce V; Cappello AR
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic shift toward oxidative phosphorylation in docetaxel resistant prostate cancer cells.
    Ippolito L; Marini A; Cavallini L; Morandi A; Pietrovito L; Pintus G; Giannoni E; Schrader T; Puhr M; Chiarugi P; Taddei ML
    Oncotarget; 2016 Sep; 7(38):61890-61904. PubMed ID: 27542265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of mitochondrial pyruvate carrier blocker UK5099 creates metabolic reprogram and greater stem-like properties in LnCap prostate cancer cells in vitro.
    Zhong Y; Li X; Yu D; Li X; Li Y; Long Y; Yuan Y; Ji Z; Zhang M; Wen JG; Nesland JM; Suo Z
    Oncotarget; 2015 Nov; 6(35):37758-69. PubMed ID: 26413751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arginine is an epigenetic regulator targeting TEAD4 to modulate OXPHOS in prostate cancer cells.
    Chen CL; Hsu SC; Chung TY; Chu CY; Wang HJ; Hsiao PW; Yeh SD; Ann DK; Yen Y; Kung HJ
    Nat Commun; 2021 Apr; 12(1):2398. PubMed ID: 33893278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondria Targeting as an Effective Strategy for Cancer Therapy.
    Ghosh P; Vidal C; Dey S; Zhang L
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32397535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. OXPHOS-targeting drugs in oncology: new perspectives.
    Kalyanaraman B; Cheng G; Hardy M; You M
    Expert Opin Ther Targets; 2023; 27(10):939-952. PubMed ID: 37736880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nutrient deprivation-related OXPHOS/glycolysis interconversion via HIF-1α/C-MYC pathway in U251 cells.
    Liu Z; Sun Y; Tan S; Liu L; Hu S; Huo H; Li M; Cui Q; Yu M
    Tumour Biol; 2016 May; 37(5):6661-71. PubMed ID: 26646563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Overview: The Diversified Role of Mitochondria in Cancer Metabolism.
    Liu Y; Sun Y; Guo Y; Shi X; Chen X; Feng W; Wu LL; Zhang J; Yu S; Wang Y; Shi Y
    Int J Biol Sci; 2023; 19(3):897-915. PubMed ID: 36778129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism.
    Pathania D; Millard M; Neamati N
    Adv Drug Deliv Rev; 2009 Nov; 61(14):1250-75. PubMed ID: 19716393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism.
    Lu J; Tan M; Cai Q
    Cancer Lett; 2015 Jan; 356(2 Pt A):156-64. PubMed ID: 24732809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting Mitochondrial Metabolism in Prostate Cancer with Triterpenoids.
    Mamouni K; Kallifatidis G; Lokeshwar BL
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33671107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cancer cell metabolism: Rewiring the mitochondrial hub.
    Oliveira GL; Coelho AR; Marques R; Oliveira PJ
    Biochim Biophys Acta Mol Basis Dis; 2021 Feb; 1867(2):166016. PubMed ID: 33246010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue.
    Whitaker-Menezes D; Martinez-Outschoorn UE; Flomenberg N; Birbe RC; Witkiewicz AK; Howell A; Pavlides S; Tsirigos A; Ertel A; Pestell RG; Broda P; Minetti C; Lisanti MP; Sotgia F
    Cell Cycle; 2011 Dec; 10(23):4047-64. PubMed ID: 22134189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative Phosphorylation as an Emerging Target in Cancer Therapy.
    Ashton TM; McKenna WG; Kunz-Schughart LA; Higgins GS
    Clin Cancer Res; 2018 Jun; 24(11):2482-2490. PubMed ID: 29420223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crosstalk between oxidative phosphorylation and immune escape in cancer: a new concept of therapeutic targets selection.
    Qiu X; Li Y; Zhang Z
    Cell Oncol (Dordr); 2023 Aug; 46(4):847-865. PubMed ID: 37040057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Androgens regulate prostate cancer cell growth via an AMPK-PGC-1α-mediated metabolic switch.
    Tennakoon JB; Shi Y; Han JJ; Tsouko E; White MA; Burns AR; Zhang A; Xia X; Ilkayeva OR; Xin L; Ittmann MM; Rick FG; Schally AV; Frigo DE
    Oncogene; 2014 Nov; 33(45):5251-61. PubMed ID: 24186207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidating the Metabolic Plasticity of Cancer: Mitochondrial Reprogramming and Hybrid Metabolic States.
    Jia D; Park JH; Jung KH; Levine H; Kaipparettu BA
    Cells; 2018 Mar; 7(3):. PubMed ID: 29534029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinoblastoma protein promotes oxidative phosphorylation through upregulation of glycolytic genes in oncogene-induced senescent cells.
    Takebayashi S; Tanaka H; Hino S; Nakatsu Y; Igata T; Sakamoto A; Narita M; Nakao M
    Aging Cell; 2015 Aug; 14(4):689-97. PubMed ID: 26009982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bezielle selectively targets mitochondria of cancer cells to inhibit glycolysis and OXPHOS.
    Chen V; Staub RE; Fong S; Tagliaferri M; Cohen I; Shtivelman E
    PLoS One; 2012; 7(2):e30300. PubMed ID: 22319564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.