These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34948247)

  • 21. Mixotrophy in green microalgae grown on an organic and nutrient rich waste.
    Candido C; Lombardi AT
    World J Microbiol Biotechnol; 2020 Jan; 36(2):20. PubMed ID: 31955252
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Promotion of microalgal growth by co-culturing with Cellvibrio pealriver using xylan as feedstock.
    Xie Z; Lin W; Luo J
    Bioresour Technol; 2016 Jan; 200():1050-4. PubMed ID: 26508433
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microalgal flocculation: Global research progress and prospects for algal biorefinery.
    Malik S; Khan F; Atta Z; Habib N; Haider MN; Wang N; Alam A; Jambi EJ; Gull M; Mehmood MA; Zhu H
    Biotechnol Appl Biochem; 2020 Jan; 67(1):52-60. PubMed ID: 31584208
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anaerobic phototrophic processes of hydrogen production by different strains of microalgae Chlamydomonas sp.
    Vargas SR; Santos PVD; Giraldi LA; Zaiat M; Calijuri MDC
    FEMS Microbiol Lett; 2018 May; 365(9):. PubMed ID: 29590395
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation and Selection of Microalgal Strains from Natural Water Sources in Viet Nam with Potential for Edible Oil Production.
    Thao TY; Linh DTN; Si VC; Carter TW; Hill RT
    Mar Drugs; 2017 Jun; 15(7):. PubMed ID: 28644408
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of two different nutrient loads on microalgal production, nutrient removal and photosynthetic efficiency in pilot-scale wastewater high rate algal ponds.
    Sutherland DL; Turnbull MH; Broady PA; Craggs RJ
    Water Res; 2014 Dec; 66():53-62. PubMed ID: 25189477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of carotenoids by microalgae: achievements and challenges.
    Varela JC; Pereira H; Vila M; León R
    Photosynth Res; 2015 Sep; 125(3):423-36. PubMed ID: 25921207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of ammonium nitrogen on microalgal growth, biochemical composition and photosynthetic performance in mixotrophic cultivation.
    Li X; Li W; Zhai J; Wei H; Wang Q
    Bioresour Technol; 2019 Feb; 273():368-376. PubMed ID: 30453251
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Holistic Approach to Managing Microalgae for Biofuel Applications.
    Show PL; Tang MS; Nagarajan D; Ling TC; Ooi CW; Chang JS
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28117737
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Auxiliary electron transport pathways in chloroplasts of microalgae.
    Peltier G; Tolleter D; Billon E; Cournac L
    Photosynth Res; 2010 Nov; 106(1-2):19-31. PubMed ID: 20607407
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction between 1,2-benzisothiazol-3(2H)-one and microalgae: Growth inhibition and detoxification mechanism.
    Wang XX; Zhang TY; Dao GH; Hu HY
    Aquat Toxicol; 2018 Dec; 205():66-75. PubMed ID: 30340028
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monitoring Photosynthetic Activity in Microalgal Cells by Raman Spectroscopy with Deuterium Oxide as a Tracking Probe.
    Yonamine Y; Suzuki Y; Ito T; Miura Y; Goda K; Ozeki Y; Hoshino Y
    Chembiochem; 2017 Oct; 18(20):2063-2068. PubMed ID: 28805994
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Manipulation of the microalgal chloroplast by genetic engineering for biotechnological utilization as a green biofactory.
    Kwon YM; Kim KW; Choi TY; Kim SY; Kim JYH
    World J Microbiol Biotechnol; 2018 Nov; 34(12):183. PubMed ID: 30478596
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Methods of downstream processing for the production of biodiesel from microalgae.
    Kim J; Yoo G; Lee H; Lim J; Kim K; Kim CW; Park MS; Yang JW
    Biotechnol Adv; 2013 Nov; 31(6):862-76. PubMed ID: 23632376
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nutrient deprivation enhances lipid content in marine microalgae.
    Gao Y; Yang M; Wang C
    Bioresour Technol; 2013 Nov; 147():484-491. PubMed ID: 24012737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biodiesel production from wet microalgae feedstock using sequential wet extraction/transesterification and direct transesterification processes.
    Chen CL; Huang CC; Ho KC; Hsiao PX; Wu MS; Chang JS
    Bioresour Technol; 2015 Oct; 194():179-86. PubMed ID: 26196418
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectroscopic analyses of chemical adaptation processes within microalgal biomass in response to changing environments.
    Vogt F; White L
    Anal Chim Acta; 2015 Mar; 867():18-28. PubMed ID: 25813024
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Constitutive and Chloroplast Targeted Expression of Acetyl-CoA Carboxylase in Oleaginous Microalgae Elevates Fatty Acid Biosynthesis.
    Li DW; Xie WH; Hao TB; Cai JX; Zhou TB; Balamurugan S; Yang WD; Liu JS; Li HY
    Mar Biotechnol (NY); 2018 Oct; 20(5):566-572. PubMed ID: 29931608
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anaerobic gaseous biofuel production using microalgal biomass - A review.
    Wirth R; Lakatos G; Böjti T; Maróti G; Bagi Z; Rákhely G; Kovács KL
    Anaerobe; 2018 Aug; 52():1-8. PubMed ID: 29803739
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Salinity manipulation as an effective method for enhanced starch production in the marine microalga Tetraselmis subcordiformis.
    Yao CH; Ai JN; Cao XP; Xue S
    Bioresour Technol; 2013 Oct; 146():663-671. PubMed ID: 23982063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.