These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34948354)

  • 41. Predicting subcellular location of protein with evolution information and sequence-based deep learning.
    Liao Z; Pan G; Sun C; Tang J
    BMC Bioinformatics; 2021 Oct; 22(Suppl 10):515. PubMed ID: 34686152
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Accurate prediction of protein contact maps by coupling residual two-dimensional bidirectional long short-term memory with convolutional neural networks.
    Hanson J; Paliwal K; Litfin T; Yang Y; Zhou Y
    Bioinformatics; 2018 Dec; 34(23):4039-4045. PubMed ID: 29931279
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Scoring protein sequence alignments using deep learning.
    Shrestha B; Adhikari B
    Bioinformatics; 2022 May; 38(11):2988-2995. PubMed ID: 35385080
    [TBL] [Abstract][Full Text] [Related]  

  • 44. DeepSSPred: A Deep Learning Based Sulfenylation Site Predictor Via a Novel nSegmented Optimize Federated Feature Encoder.
    Khan ZU; Pi D
    Protein Pept Lett; 2021; 28(6):708-721. PubMed ID: 33267753
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multifaceted analysis of training and testing convolutional neural networks for protein secondary structure prediction.
    Shapovalov M; Dunbrack RL; Vucetic S
    PLoS One; 2020; 15(5):e0232528. PubMed ID: 32374785
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Prediction of 8-state protein secondary structures by a novel deep learning architecture.
    Zhang B; Li J; Lü Q
    BMC Bioinformatics; 2018 Aug; 19(1):293. PubMed ID: 30075707
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modeling aspects of the language of life through transfer-learning protein sequences.
    Heinzinger M; Elnaggar A; Wang Y; Dallago C; Nechaev D; Matthes F; Rost B
    BMC Bioinformatics; 2019 Dec; 20(1):723. PubMed ID: 31847804
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improved inter-residue contact prediction via a hybrid generative model and dynamic loss function.
    Madani M; Mahdi Behzadi M; Song D; Ilies HT; Tarakanova A
    Comput Struct Biotechnol J; 2022; 20():6138-6148. PubMed ID: 36420166
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Protein secondary structure assignment using residual networks.
    Antony JV; Koya R; Pournami PN; Nair GG; Balakrishnan JP
    J Mol Model; 2022 Aug; 28(9):269. PubMed ID: 35997827
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evotuning protocols for Transformer-based variant effect prediction on multi-domain proteins.
    Yamaguchi H; Saito Y
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34180966
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improved prediction of critical residues for protein function based on network and phylogenetic analyses.
    Thibert B; Bredesen DE; del Rio G
    BMC Bioinformatics; 2005 Aug; 6():213. PubMed ID: 16124876
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improving protein secondary structure prediction based on short subsequences with local structure similarity.
    Lin HN; Sung TY; Ho SY; Hsu WL
    BMC Genomics; 2010 Dec; 11 Suppl 4(Suppl 4):S4. PubMed ID: 21143813
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DNSS2: Improved ab initio protein secondary structure prediction using advanced deep learning architectures.
    Guo Z; Hou J; Cheng J
    Proteins; 2021 Feb; 89(2):207-217. PubMed ID: 32893403
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predicting a protein's melting temperature from its amino acid sequence.
    Gorania M; Seker H; Haris PI
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1820-3. PubMed ID: 21095941
    [TBL] [Abstract][Full Text] [Related]  

  • 56. ProtInteract: A deep learning framework for predicting protein-protein interactions.
    Soleymani F; Paquet E; Viktor HL; Michalowski W; Spinello D
    Comput Struct Biotechnol J; 2023; 21():1324-1348. PubMed ID: 36817951
    [TBL] [Abstract][Full Text] [Related]  

  • 57. DeepCDpred: Inter-residue distance and contact prediction for improved prediction of protein structure.
    Ji S; Oruç T; Mead L; Rehman MF; Thomas CM; Butterworth S; Winn PJ
    PLoS One; 2019; 14(1):e0205214. PubMed ID: 30620738
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interconnection between the protein solubility and amino acid and dipeptide compositions.
    Niu X; Li N; Chen D; Wang Z
    Protein Pept Lett; 2013 Jan; 20(1):88-95. PubMed ID: 22789104
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The applications of deep learning algorithms on in silico druggable proteins identification.
    Yu L; Xue L; Liu F; Li Y; Jing R; Luo J
    J Adv Res; 2022 Nov; 41():219-231. PubMed ID: 36328750
    [TBL] [Abstract][Full Text] [Related]  

  • 60. PIPENN: protein interface prediction from sequence with an ensemble of neural nets.
    Stringer B; de Ferrante H; Abeln S; Heringa J; Feenstra KA; Haydarlou R
    Bioinformatics; 2022 Apr; 38(8):2111-2118. PubMed ID: 35150231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.