These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 34948389)
21. Fabrication and characterization of novel nano- and micro-HA/PCL composite scaffolds using a modified rapid prototyping process. Heo SJ; Kim SE; Wei J; Hyun YT; Yun HS; Kim DH; Shin JW; Shin JW J Biomed Mater Res A; 2009 Apr; 89(1):108-16. PubMed ID: 18431758 [TBL] [Abstract][Full Text] [Related]
22. Fabrication and characterization of novel ethyl cellulose-grafted-poly (ɛ-caprolactone)/alginate nanofibrous/macroporous scaffolds incorporated with nano-hydroxyapatite for bone tissue engineering. Hokmabad VR; Davaran S; Aghazadeh M; Rahbarghazi R; Salehi R; Ramazani A J Biomater Appl; 2019 Mar; 33(8):1128-1144. PubMed ID: 30651055 [TBL] [Abstract][Full Text] [Related]
23. Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxyapatite. Degli Esposti M; Chiellini F; Bondioli F; Morselli D; Fabbri P Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():286-296. PubMed ID: 30948063 [TBL] [Abstract][Full Text] [Related]
24. Design and fabrication of bone tissue scaffolds based on PCL/PHBV containing hydroxyapatite nanoparticles: dual-leaching technique. Nahanmoghadam A; Asemani M; Goodarzi V; Ebrahimi-Barough S J Biomed Mater Res A; 2021 Jun; 109(6):981-993. PubMed ID: 33448637 [TBL] [Abstract][Full Text] [Related]
25. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration. Thadavirul N; Pavasant P; Supaphol P J Biomater Sci Polym Ed; 2014; 25(17):1986-2008. PubMed ID: 25291106 [TBL] [Abstract][Full Text] [Related]
26. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168 [TBL] [Abstract][Full Text] [Related]
27. Excavating the Role of Aloe Vera Wrapped Mesoporous Hydroxyapatite Frame Ornamentation in Newly Architectured Polyurethane Scaffolds for Osteogenesis and Guided Bone Regeneration with Microbial Protection. Selvakumar M; Pawar HS; Francis NK; Das B; Dhara S; Chattopadhyay S ACS Appl Mater Interfaces; 2016 Mar; 8(9):5941-60. PubMed ID: 26889707 [TBL] [Abstract][Full Text] [Related]
28. Facile manufacturing of fused-deposition modeled composite scaffolds for tissue engineering-an embedding model with plasticity for incorporation of additives. Manjunath KS; Sridhar K; Gopinath V; Sankar K; Sundaram A; Gupta N; Shiek ASSJ; Shantanu PS Biomed Mater; 2020 Dec; 16(1):015028. PubMed ID: 33331292 [TBL] [Abstract][Full Text] [Related]
29. Preparation, characterization and in vitro test of composites poly-lactic acid/hydroxyapatite scaffolds for bone tissue engineering. Carfì Pavia F; Conoscenti G; Greco S; La Carrubba V; Ghersi G; Brucato V Int J Biol Macromol; 2018 Nov; 119():945-953. PubMed ID: 30081128 [TBL] [Abstract][Full Text] [Related]
30. Biomimetic component coating on 3D scaffolds using high bioactivity of mesoporous bioactive ceramics. Yun HS; Kim SH; Khang D; Choi J; Kim HH; Kang M Int J Nanomedicine; 2011; 6():2521-31. PubMed ID: 22072886 [TBL] [Abstract][Full Text] [Related]
31. Three-dimensional poly (ε-caprolactone)/hydroxyapatite/collagen scaffolds incorporating bone marrow mesenchymal stem cells for the repair of bone defects. Qi X; Huang Y; Han D; Zhang J; Cao J; Jin X; Huang J; Li X; Wang T Biomed Mater; 2016 Mar; 11(2):025005. PubMed ID: 26964015 [TBL] [Abstract][Full Text] [Related]
32. Engineered electrospun poly(caprolactone)/polycaprolactone-g-hydroxyapatite nano-fibrous scaffold promotes human fibroblasts adhesion and proliferation. Keivani F; Shokrollahi P; Zandi M; Irani S; F Shokrolahi ; Khorasani SC Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():78-88. PubMed ID: 27523999 [TBL] [Abstract][Full Text] [Related]
33. Processing/structure/property relationship of multi-scaled PCL and PCL-HA composite scaffolds prepared via gas foaming and NaCl reverse templating. Salerno A; Zeppetelli S; Di Maio E; Iannace S; Netti PA Biotechnol Bioeng; 2011 Apr; 108(4):963-76. PubMed ID: 21404268 [TBL] [Abstract][Full Text] [Related]
34. A polycaprolactone/cuttlefish bone-derived hydroxyapatite composite porous scaffold for bone tissue engineering. Kim BS; Yang SS; Lee J J Biomed Mater Res B Appl Biomater; 2014 Jul; 102(5):943-51. PubMed ID: 24259295 [TBL] [Abstract][Full Text] [Related]
35. Comparison between PCL/hydroxyapatite (HA) and PCL/halloysite nanotube (HNT) composite scaffolds prepared by co-extrusion and gas foaming. Jing X; Mi HY; Turng LS Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():53-61. PubMed ID: 28024618 [TBL] [Abstract][Full Text] [Related]
36. Fabrication techniques involved in developing the composite scaffolds PCL/HA nanoparticles for bone tissue engineering applications. Murugan S; Parcha SR J Mater Sci Mater Med; 2021 Aug; 32(8):93. PubMed ID: 34379204 [TBL] [Abstract][Full Text] [Related]
37. Polymer-ceramic spiral structured scaffolds for bone tissue engineering: effect of hydroxyapatite composition on human fetal osteoblasts. Zhang X; Chang W; Lee P; Wang Y; Yang M; Li J; Kumbar SG; Yu X PLoS One; 2014; 9(1):e85871. PubMed ID: 24475056 [TBL] [Abstract][Full Text] [Related]
38. The osteogenesis of bone marrow stem cells on mPEG-PCL-mPEG/hydroxyapatite composite scaffold via solid freeform fabrication. Liao HT; Chen YY; Lai YT; Hsieh MF; Jiang CP Biomed Res Int; 2014; 2014():321549. PubMed ID: 24868523 [TBL] [Abstract][Full Text] [Related]