These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 34948886)
41. Acceleration of saturated porous media clogging and silicon dissolution due to low concentrations of Al(III) in the recharge of reclaimed water. Cui X; Chen C; Sun S; Zhou D; Ndayisenga F; Huo M; Zhu S; Zhang L; Crittenden JC Water Res; 2018 Oct; 143():136-145. PubMed ID: 29945029 [TBL] [Abstract][Full Text] [Related]
42. Lab experiments on hybridization of managed aquifer recharge with river water via sand column, pre-oxidation, and nanofiltration. Duong TH; Bang WH; Kim GB; Maeng SK Chemosphere; 2022 Jan; 287(Pt 3):132350. PubMed ID: 34582933 [TBL] [Abstract][Full Text] [Related]
43. Identifying the suitable managed aquifer recharge (MAR) strategy in an overexploited and contaminated river basin. Jadav K; Yadav B Environ Monit Assess; 2023 Aug; 195(8):1014. PubMed ID: 37526743 [TBL] [Abstract][Full Text] [Related]
44. Fluoride in weathered rock aquifers of southern India: Managed Aquifer Recharge for mitigation. Brindha K; Jagadeshan G; Kalpana L; Elango L Environ Sci Pollut Res Int; 2016 May; 23(9):8302-16. PubMed ID: 26822219 [TBL] [Abstract][Full Text] [Related]
45. Characteristics of hydrochemistry and nitrogen behavior under long-term managed aquifer recharge with reclaimed water: A case study in north China. Li C; Li B; Bi E Sci Total Environ; 2019 Jun; 668():1030-1037. PubMed ID: 31018445 [TBL] [Abstract][Full Text] [Related]
46. Dynamics and control mechanisms of inorganic nitrogen removal during wetting-drying cycles: A simulated managed aquifer recharge experiment. Xia C; Li Z; Fan W; Du X Environ Res; 2023 Sep; 232():116354. PubMed ID: 37295590 [TBL] [Abstract][Full Text] [Related]
47. Multi-tracing of recharge seasonality and contamination in groundwater: A tool for urban water resource management. Vystavna Y; Schmidt SI; Diadin D; Rossi PM; Vergeles Y; Erostate M; Yermakovych I; Yakovlev V; Knöller K; Vadillo I Water Res; 2019 Sep; 161():413-422. PubMed ID: 31226539 [TBL] [Abstract][Full Text] [Related]
48. Assessment of virus removal by managed aquifer recharge at three full-scale operations. Betancourt WQ; Kitajima M; Wing AD; Regnery J; Drewes JE; Pepper IL; Gerba CP J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(14):1685-92. PubMed ID: 25320855 [TBL] [Abstract][Full Text] [Related]
50. Emerging polar pollutants in groundwater: Potential impact of urban stormwater infiltration practices. Pinasseau L; Wiest L; Volatier L; Mermillod-Blondin F; Vulliet E Environ Pollut; 2020 Nov; 266(Pt 2):115387. PubMed ID: 32829126 [TBL] [Abstract][Full Text] [Related]
51. Modelling of recharge and pollutant fluxes to urban groundwaters. Thomas A; Tellam J Sci Total Environ; 2006 May; 360(1-3):158-79. PubMed ID: 16325236 [TBL] [Abstract][Full Text] [Related]
52. Pollutant sources in an arsenic-affected multilayer aquifer in the Po Plain of Italy: Implications for drinking-water supply. Rotiroti M; McArthur J; Fumagalli L; Stefania GA; Sacchi E; Bonomi T Sci Total Environ; 2017 Feb; 578():502-512. PubMed ID: 27836337 [TBL] [Abstract][Full Text] [Related]
53. Investigation of severe water problem in urban areas of a developing country: the case of Dhaka, Bangladesh. Nahar MS; Zhang J; Ueda A; Yoshihisa F Environ Geochem Health; 2014 Dec; 36(6):1079-94. PubMed ID: 24748410 [TBL] [Abstract][Full Text] [Related]
54. Evaluating the Economics of Managed Aquifer Recharge Systems. Brand CC Ground Water; 2022 Sep; 60(5):602-605. PubMed ID: 35041204 [TBL] [Abstract][Full Text] [Related]
55. Groundwater quality assessment in semi-arid regions using integrated approaches: the case of Grombalia aquifer (NE Tunisia). Kammoun S; Trabelsi R; Re V; Zouari K; Henchiri J Environ Monit Assess; 2018 Jan; 190(2):87. PubMed ID: 29352350 [TBL] [Abstract][Full Text] [Related]
56. Microbiological risks of recycling urban stormwater via aquifers. Page D; Gonzalez D; Dillon P Water Sci Technol; 2012; 65(9):1692-5. PubMed ID: 22508134 [TBL] [Abstract][Full Text] [Related]
57. Inferring trophic conditions in managed aquifer recharge systems from metagenomic data. Hellauer K; Michel P; Holland SI; Hübner U; Drewes JE; Lauro FM; Manefield MJ Sci Total Environ; 2021 Jun; 772():145512. PubMed ID: 33571764 [TBL] [Abstract][Full Text] [Related]
58. Identification of critical contaminants in wastewater effluent for managed aquifer recharge. Yuan J; Van Dyke MI; Huck PM Chemosphere; 2017 Apr; 172():294-301. PubMed ID: 28086157 [TBL] [Abstract][Full Text] [Related]
59. Formation and transformation of chloroform during managed aquifer recharge (MAR). Liu D; Liang X; Zhang W; Wang Z; Ma T; Li F; Chen X J Environ Manage; 2018 Aug; 219():304-315. PubMed ID: 29753238 [TBL] [Abstract][Full Text] [Related]
60. An integrated groundwater vulnerability and artificial recharge site suitability assessment using GIS multi-criteria decision making approach in Kayseri region, Turkey. Mouhoumed RM; Ekmekcioğlu Ö; Özger M Environ Sci Pollut Res Int; 2024 Jun; 31(27):39794-39822. PubMed ID: 38833051 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]