BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 34949191)

  • 1. Co-option of the same ancestral gene family gave rise to mammalian and reptilian toxins.
    Barua A; Koludarov I; Mikheyev AS
    BMC Biol; 2021 Dec; 19(1):268. PubMed ID: 34949191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tempo and Mode of the Evolution of Venom and Poison in Tetrapods.
    Harris RJ; Arbuckle K
    Toxins (Basel); 2016 Jun; 8(7):. PubMed ID: 27348001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ancient, conserved gene regulatory network led to the rise of oral venom systems.
    Barua A; Mikheyev AS
    Proc Natl Acad Sci U S A; 2021 Apr; 118(14):. PubMed ID: 33782124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solenodon genome reveals convergent evolution of venom in eulipotyphlan mammals.
    Casewell NR; Petras D; Card DC; Suranse V; Mychajliw AM; Richards D; Koludarov I; Albulescu LO; Slagboom J; Hempel BF; Ngum NM; Kennerley RJ; Brocca JL; Whiteley G; Harrison RA; Bolton FMS; Debono J; Vonk FJ; Alföldi J; Johnson J; Karlsson EK; Lindblad-Toh K; Mellor IR; Süssmuth RD; Fry BG; Kuruppu S; Hodgson WC; Kool J; Castoe TA; Barnes I; Sunagar K; Undheim EAB; Turvey ST
    Proc Natl Acad Sci U S A; 2019 Dec; 116(51):25745-25755. PubMed ID: 31772017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic evolution of venom proteins in squamate reptiles.
    Casewell NR; Huttley GA; Wüster W
    Nat Commun; 2012; 3():1066. PubMed ID: 22990862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structural and functional diversification of the Toxicofera reptile venom system.
    Fry BG; Casewell NR; Wüster W; Vidal N; Young B; Jackson TN
    Toxicon; 2012 Sep; 60(4):434-48. PubMed ID: 22446061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Many Options, Few Solutions: Over 60 My Snakes Converged on a Few Optimal Venom Formulations.
    Barua A; Mikheyev AS
    Mol Biol Evol; 2019 Sep; 36(9):1964-1974. PubMed ID: 31220860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxins from scratch? Diverse, multimodal gene origins in the predatory robber fly Dasypogon diadema indicate a dynamic venom evolution in dipteran insects.
    Drukewitz SH; Bokelmann L; Undheim EAB; von Reumont BM
    Gigascience; 2019 Jul; 8(7):. PubMed ID: 31289835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Fast and the Furriest: Investigating the Rate of Selection on Mammalian Toxins.
    Fitzpatrick LLJ; Nijman V; Ligabue-Braun R; Nekaris KA
    Toxins (Basel); 2022 Dec; 14(12):. PubMed ID: 36548740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the reptile CD1 genes: evolutionary implications.
    Yang Z; Wang C; Wang T; Bai J; Zhao Y; Liu X; Ma Q; Wu X; Guo Y; Zhao Y; Ren L
    Immunogenetics; 2015 Jun; 67(5-6):337-46. PubMed ID: 25921705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restriction and recruitment-gene duplication and the origin and evolution of snake venom toxins.
    Hargreaves AD; Swain MT; Hegarty MJ; Logan DW; Mulley JF
    Genome Biol Evol; 2014 Aug; 6(8):2088-95. PubMed ID: 25079342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defensins and the convergent evolution of platypus and reptile venom genes.
    Whittington CM; Papenfuss AT; Bansal P; Torres AM; Wong ES; Deakin JE; Graves T; Alsop A; Schatzkamer K; Kremitzki C; Ponting CP; Temple-Smith P; Warren WC; Kuchel PW; Belov K
    Genome Res; 2008 Jun; 18(6):986-94. PubMed ID: 18463304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversity, phylogenetic distribution, and origins of venomous catfishes.
    Wright JJ
    BMC Evol Biol; 2009 Dec; 9():282. PubMed ID: 19961571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin and convergent evolution of exendin genes.
    Irwin DM
    Gen Comp Endocrinol; 2012 Jan; 175(1):27-33. PubMed ID: 22137915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolutionary dynamics of venom toxins made by insects and other animals.
    Walker AA
    Biochem Soc Trans; 2020 Aug; 48(4):1353-1365. PubMed ID: 32756910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Transcriptomic Approach to the Recruitment of Venom Proteins in a Marine Annelid.
    Rodrigo AP; Grosso AR; Baptista PV; Fernandes AR; Costa PM
    Toxins (Basel); 2021 Jan; 13(2):. PubMed ID: 33525375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracing monotreme venom evolution in the genomics era.
    Whittington CM; Belov K
    Toxins (Basel); 2014 Apr; 6(4):1260-73. PubMed ID: 24699339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early evolution of the venom system in lizards and snakes.
    Fry BG; Vidal N; Norman JA; Vonk FJ; Scheib H; Ramjan SF; Kuruppu S; Fung K; Hedges SB; Richardson MK; Hodgson WC; Ignjatovic V; Summerhayes R; Kochva E
    Nature; 2006 Feb; 439(7076):584-8. PubMed ID: 16292255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The first venomous crustacean revealed by transcriptomics and functional morphology: remipede venom glands express a unique toxin cocktail dominated by enzymes and a neurotoxin.
    von Reumont BM; Blanke A; Richter S; Alvarez F; Bleidorn C; Jenner RA
    Mol Biol Evol; 2014 Jan; 31(1):48-58. PubMed ID: 24132120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comprehensive Multi-Omic Approach Reveals a Relatively Simple Venom in a Diet Generalist, the Northern Short-Tailed Shrew, Blarina brevicauda.
    Hanf ZR; Chavez AS
    Genome Biol Evol; 2020 Jul; 12(7):1148-1166. PubMed ID: 32520994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.