These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 34949197)
1. Production of 9,21-dihydroxy-20-methyl-pregna-4-en-3-one from phytosterols in Mycobacterium neoaurum by modifying multiple genes and improving the intracellular environment. Yuan CY; Ma ZG; Zhang JX; Liu XC; Du GL; Sun JS; Shi JP; Zhang BG Microb Cell Fact; 2021 Dec; 20(1):229. PubMed ID: 34949197 [TBL] [Abstract][Full Text] [Related]
2. Production of 21-hydroxy-20-methyl-pregna-1,4-dien-3-one by modifying multiple genes in Mycolicibacterium. Yuan C; Ma Z; Li Y; Zhang J; Liu X; Han S; Du G; Shi J; Sun J; Zhang B Appl Microbiol Biotechnol; 2023 Mar; 107(5-6):1563-1574. PubMed ID: 36729227 [TBL] [Abstract][Full Text] [Related]
3. Whole-Genome Analysis of Zhang J; Zhang R; Song S; Su Z; Shi J; Cao H; Zhang B Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047121 [No Abstract] [Full Text] [Related]
4. Bioconversion of Phytosterols to 9-Hydroxy-3-Oxo-4,17-Pregadiene-20-Carboxylic Acid Methyl Ester by Enoyl-CoA Deficiency and Modifying Multiple Genes in Mycolicibacterium neoaurum. Yuan C; Song S; He J; Zhang J; Liu X; Pena EL; Sun J; Shi J; Su Z; Zhang B Appl Environ Microbiol; 2022 Nov; 88(22):e0130322. PubMed ID: 36286498 [TBL] [Abstract][Full Text] [Related]
5. Improving the production of 9α-hydroxy-4-androstene-3,17-dione from phytosterols by 3-ketosteroid-Δ Liu X; Zhang J; Yuan C; Du G; Han S; Shi J; Sun J; Zhang B Microb Cell Fact; 2023 Mar; 22(1):53. PubMed ID: 36922830 [TBL] [Abstract][Full Text] [Related]
6. Efficient Production of 9,22-Dihydroxy-23,24-bisnorchol-4-ene-3-one from Phytosterols by Modifying Multiple Genes in Han S; Liu X; He B; Zhai X; Yuan C; Li Y; Lin W; Wang H; Zhang B Int J Mol Sci; 2024 Mar; 25(7):. PubMed ID: 38612391 [TBL] [Abstract][Full Text] [Related]
8. The Sterol Carrier Hydroxypropyl-β-Cyclodextrin Enhances the Metabolism of Phytosterols by Mycobacterium neoaurum. Su L; Xu S; Shen Y; Xia M; Ren X; Wang L; Shang Z; Wang M Appl Environ Microbiol; 2020 Jul; 86(15):. PubMed ID: 32414803 [TBL] [Abstract][Full Text] [Related]
9. Loop pathways are responsible for tuning the accumulation of C19- and C22-sterol intermediates in the mycobacterial phytosterol degradation pathway. Song S; He J; Gao M; Huang Y; Cheng X; Su Z Microb Cell Fact; 2023 Jan; 22(1):19. PubMed ID: 36710325 [TBL] [Abstract][Full Text] [Related]
10. [Identification of a new C-23 metabolite in sterol degradation of He J; Dong X; Huang Y; Song S; Su Z Sheng Wu Gong Cheng Xue Bao; 2023 Nov; 39(11):4550-4562. PubMed ID: 38013183 [No Abstract] [Full Text] [Related]
11. Improving the production of 22-hydroxy-23,24-bisnorchol-4-ene-3-one from sterols in Mycobacterium neoaurum by increasing cell permeability and modifying multiple genes. Xiong LB; Liu HH; Xu LQ; Sun WJ; Wang FQ; Wei DZ Microb Cell Fact; 2017 May; 16(1):89. PubMed ID: 28532497 [TBL] [Abstract][Full Text] [Related]
12. Enhancing production and purity of 9-OH-AD from phytosterols by balancing metabolic flux of the side-chain degradation and 9-position hydroxylation in Mycobacterium neoaurum. Zhu X; Wang X; Zhang J; Wang X Biotechnol J; 2024 Jan; 19(1):e2300439. PubMed ID: 38129322 [TBL] [Abstract][Full Text] [Related]
13. High-efficiency bioconversion of phytosterol to bisnoralcohol by metabolically engineered Mycobacterium neoaurum in a micro-emulsion system. Wang X; Ke X; Dong H; Liu Z; Zheng Y Biotechnol J; 2024 Sep; 19(9):e2400387. PubMed ID: 39295572 [TBL] [Abstract][Full Text] [Related]
14. Enhancing the bioconversion of phytosterols to steroidal intermediates by the deficiency of kasB in the cell wall synthesis of Mycobacterium neoaurum. Xiong LB; Liu HH; Zhao M; Liu YJ; Song L; Xie ZY; Xu YX; Wang FQ; Wei DZ Microb Cell Fact; 2020 Mar; 19(1):80. PubMed ID: 32228591 [TBL] [Abstract][Full Text] [Related]
15. Whole-genome and enzymatic analyses of an androstenedione-producing Mycobacterium strain with residual phytosterol-degrading pathways. Wang H; Song S; Peng F; Yang F; Chen T; Li X; Cheng X; He Y; Huang Y; Su Z Microb Cell Fact; 2020 Oct; 19(1):187. PubMed ID: 33008397 [TBL] [Abstract][Full Text] [Related]
16. Obtaining of 24-Norchol-4-ene-3,22-dione from Phytosterol with Mutants of Mycolicibacterium neoaurum. Dovbnya DV; Ivashina TV; Khomutov SM; Shutov AA; Deshcherevskaya NO; Donova MV Methods Mol Biol; 2023; 2704():291-312. PubMed ID: 37642852 [TBL] [Abstract][Full Text] [Related]
17. Phytosterol conversion into C9 non-hydroxylated derivatives through gene regulation in Mycobacterium fortuitum. Liu X; He B; Zhang J; Yuan C; Han S; Du G; Shi J; Sun J; Zhang B Appl Microbiol Biotechnol; 2023 Dec; 107(24):7635-7646. PubMed ID: 37831185 [TBL] [Abstract][Full Text] [Related]
18. Engineered 3-Ketosteroid 9α-Hydroxylases in Mycobacterium neoaurum: an Efficient Platform for Production of Steroid Drugs. Liu HH; Xu LQ; Yao K; Xiong LB; Tao XY; Liu M; Wang FQ; Wei DZ Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29728384 [TBL] [Abstract][Full Text] [Related]
19. Improving phytosterol biotransformation at low nitrogen levels by enhancing the methylcitrate cycle with transcriptional regulators PrpR and GlnR of Mycobacterium neoaurum. Zhang Y; Zhou X; Wang X; Wang L; Xia M; Luo J; Shen Y; Wang M Microb Cell Fact; 2020 Jan; 19(1):13. PubMed ID: 31992309 [TBL] [Abstract][Full Text] [Related]