These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 34949638)
1. Response of an Afro-Palearctic bird migrant to glaciation cycles. Thorup K; Pedersen L; da Fonseca RR; Naimi B; Nogués-Bravo D; Krapp M; Manica A; Willemoes M; Sjöberg S; Feng S; Chen G; Rey-Iglesia A; Campos PF; Beyer R; Araújo MB; Hansen AJ; Zhang G; Tøttrup AP; Rahbek C Proc Natl Acad Sci U S A; 2021 Dec; 118(52):. PubMed ID: 34949638 [TBL] [Abstract][Full Text] [Related]
2. Low migratory connectivity is common in long-distance migrant birds. Finch T; Butler SJ; Franco AM; Cresswell W J Anim Ecol; 2017 May; 86(3):662-673. PubMed ID: 28093769 [TBL] [Abstract][Full Text] [Related]
3. Resource tracking within and across continents in long-distance bird migrants. Thorup K; Tøttrup AP; Willemoes M; Klaassen RH; Strandberg R; Vega ML; Dasari HP; Araújo MB; Wikelski M; Rahbek C Sci Adv; 2017 Jan; 3(1):e1601360. PubMed ID: 28070557 [TBL] [Abstract][Full Text] [Related]
4. Population consequences of migratory variability differ between flyways. Patchett R; Finch T; Cresswell W Curr Biol; 2018 Apr; 28(8):R340-R341. PubMed ID: 29689204 [TBL] [Abstract][Full Text] [Related]
5. Flight range, fuel load and the impact of climate change on the journeys of migrant birds. Howard C; Stephens PA; Tobias JA; Sheard C; Butchart SHM; Willis SG Proc Biol Sci; 2018 Feb; 285(1873):. PubMed ID: 29467262 [TBL] [Abstract][Full Text] [Related]
6. Simulation-based reconstruction of global bird migration over the past 50,000 years. Somveille M; Wikelski M; Beyer RM; Rodrigues ASL; Manica A; Jetz W Nat Commun; 2020 Feb; 11(1):801. PubMed ID: 32071295 [TBL] [Abstract][Full Text] [Related]
7. Drivers of climate change impacts on bird communities. Pearce-Higgins JW; Eglington SM; Martay B; Chamberlain DE J Anim Ecol; 2015 Jul; 84(4):943-54. PubMed ID: 25757576 [TBL] [Abstract][Full Text] [Related]
8. The influence of climate variability on demographic rates of avian Afro-palearctic migrants. Telenský T; Klvaňa P; Jelínek M; Cepák J; Reif J Sci Rep; 2020 Oct; 10(1):17592. PubMed ID: 33067507 [TBL] [Abstract][Full Text] [Related]
9. Ice age unfrozen: severe effect of the last interglacial, not glacial, climate change on East Asian avifauna. Dong F; Hung CM; Li XL; Gao JY; Zhang Q; Wu F; Lei FM; Li SH; Yang XJ BMC Evol Biol; 2017 Dec; 17(1):244. PubMed ID: 29212454 [TBL] [Abstract][Full Text] [Related]
10. Weather at the winter and stopover areas determines spring migration onset, progress, and advancements in Afro-Palearctic migrant birds. Haest B; Hüppop O; Bairlein F Proc Natl Acad Sci U S A; 2020 Jul; 117(29):17056-17062. PubMed ID: 32601181 [TBL] [Abstract][Full Text] [Related]
11. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Both C; Van Turnhout CA; Bijlsma RG; Siepel H; Van Strien AJ; Foppen RP Proc Biol Sci; 2010 Apr; 277(1685):1259-66. PubMed ID: 20018784 [TBL] [Abstract][Full Text] [Related]
12. Patterns of bird migration phenology in South Africa suggest northern hemisphere climate as the most consistent driver of change. Bussière EM; Underhill LG; Altwegg R Glob Chang Biol; 2015 Jun; 21(6):2179-90. PubMed ID: 25640890 [TBL] [Abstract][Full Text] [Related]
13. The phenology mismatch hypothesis: are declines of migrant birds linked to uneven global climate change? Jones T; Cresswell W J Anim Ecol; 2010 Jan; 79(1):98-108. PubMed ID: 19694874 [TBL] [Abstract][Full Text] [Related]
14. Migratory behavior and winter geography drive differential range shifts of eastern birds in response to recent climate change. Rushing CS; Royle JA; Ziolkowski DJ; Pardieck KL Proc Natl Acad Sci U S A; 2020 Jun; 117(23):12897-12903. PubMed ID: 32457137 [TBL] [Abstract][Full Text] [Related]
15. Climatic effects on breeding grounds are more important drivers of breeding phenology in migrant birds than carry-over effects from wintering grounds. Ockendon N; Leech D; Pearce-Higgins JW Biol Lett; 2013; 9(6):20130669. PubMed ID: 24196517 [TBL] [Abstract][Full Text] [Related]
16. The effects of long-distance migration on the evolution of moult strategies in Western-Palearctic passerines. Kiat Y; Izhaki I; Sapir N Biol Rev Camb Philos Soc; 2019 Apr; 94(2):700-720. PubMed ID: 30334341 [TBL] [Abstract][Full Text] [Related]
17. Palearctic passerine migrant declines in African wintering grounds in the Anthropocene (1970-1990 and near future): A conservation assessment using publicly available GIS predictors and machine learning. Walther BA; Huettmann F Sci Total Environ; 2021 Jul; 777():146093. PubMed ID: 33684761 [TBL] [Abstract][Full Text] [Related]
18. Avian migration phenology and global climate change. Cotton PA Proc Natl Acad Sci U S A; 2003 Oct; 100(21):12219-22. PubMed ID: 14519854 [TBL] [Abstract][Full Text] [Related]
19. Broad-scale seasonal climate tracking is a consequence, not a driver, of avian migratory connectivity. Somveille M; Bossu CM; DeSaix MG; Alvarado AH; Gómez Villaverde S; Rodríguez Otero G; Hernández-Baños BE; Smith TB; Ruegg KC Ecol Lett; 2024 Aug; 27(8):e14496. PubMed ID: 39132717 [TBL] [Abstract][Full Text] [Related]
20. Emergence of long distance bird migrations: a new model integrating global climate changes. Louchart A Naturwissenschaften; 2008 Dec; 95(12):1109-19. PubMed ID: 18712337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]