These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 34949751)
1. Effects of Engineered Choi HJ; Jin YS; Lee WH J Microbiol Biotechnol; 2022 Jan; 32(1):117-125. PubMed ID: 34949751 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose. Lee WH; Jin YS J Microbiol Biotechnol; 2017 Sep; 27(9):1649-1656. PubMed ID: 28683531 [TBL] [Abstract][Full Text] [Related]
3. Observation of Cellodextrin Accumulation Resulted from Non-Conventional Secretion of Intracellular β-Glucosidase by Engineered Lee WH; Jin YS J Microbiol Biotechnol; 2021 Jul; 31(7):1035-1043. PubMed ID: 34226403 [TBL] [Abstract][Full Text] [Related]
4. Enhanced cellobiose fermentation by engineered Saccharomyces cerevisiae expressing a mutant cellodextrin facilitator and cellobiose phosphorylase. Kim H; Oh EJ; Lane ST; Lee WH; Cate JHD; Jin YS J Biotechnol; 2018 Jun; 275():53-59. PubMed ID: 29660472 [TBL] [Abstract][Full Text] [Related]
5. Improved ethanol production by engineered Saccharomyces cerevisiae expressing a mutated cellobiose transporter during simultaneous saccharification and fermentation. Lee WH; Jin YS J Biotechnol; 2017 Mar; 245():1-8. PubMed ID: 28143766 [TBL] [Abstract][Full Text] [Related]
6. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae. Oh EJ; Skerker JM; Kim SR; Wei N; Turner TL; Maurer MJ; Arkin AP; Jin YS Appl Environ Microbiol; 2016 Jun; 82(12):3631-3639. PubMed ID: 27084006 [TBL] [Abstract][Full Text] [Related]
7. Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation. Kim H; Lee WH; Galazka JM; Cate JH; Jin YS Appl Microbiol Biotechnol; 2014 Feb; 98(3):1087-94. PubMed ID: 24190499 [TBL] [Abstract][Full Text] [Related]
8. Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters. Ha SJ; Galazka JM; Joong Oh E; Kordić V; Kim H; Jin YS; Cate JH Metab Eng; 2013 Jan; 15():134-43. PubMed ID: 23178501 [TBL] [Abstract][Full Text] [Related]
9. An evaluation of cellulose saccharification and fermentation with an engineered Saccharomyces cerevisiae capable of cellobiose and xylose utilization. Fox JM; Levine SE; Blanch HW; Clark DS Biotechnol J; 2012 Mar; 7(3):361-73. PubMed ID: 22228702 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular β-glucosidase. Lee WH; Nan H; Kim HJ; Jin YS J Biotechnol; 2013 Sep; 167(3):316-22. PubMed ID: 23835155 [TBL] [Abstract][Full Text] [Related]
11. Cofermentation of cellobiose and galactose by an engineered Saccharomyces cerevisiae strain. Ha SJ; Wei Q; Kim SR; Galazka JM; Cate JH; Jin YS Appl Environ Microbiol; 2011 Aug; 77(16):5822-5. PubMed ID: 21705527 [TBL] [Abstract][Full Text] [Related]
12. Molecular cloning and expression of fungal cellobiose transporters and β-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae. Bae YH; Kang KH; Jin YS; Seo JH J Biotechnol; 2014 Jan; 169():34-41. PubMed ID: 24184384 [TBL] [Abstract][Full Text] [Related]
13. Directed evolution of a cellodextrin transporter for improved biofuel production under anaerobic conditions in Saccharomyces cerevisiae. Lian J; Li Y; HamediRad M; Zhao H Biotechnol Bioeng; 2014 Aug; 111(8):1521-31. PubMed ID: 24519319 [TBL] [Abstract][Full Text] [Related]
14. Lactic acid production from cellobiose and xylose by engineered Saccharomyces cerevisiae. Turner TL; Zhang GC; Oh EJ; Subramaniam V; Adiputra A; Subramaniam V; Skory CD; Jang JY; Yu BJ; Park I; Jin YS Biotechnol Bioeng; 2016 May; 113(5):1075-83. PubMed ID: 26524688 [TBL] [Abstract][Full Text] [Related]
15. Optimization of CDT-1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae. Zha J; Li BZ; Shen MH; Hu ML; Song H; Yuan YJ PLoS One; 2013; 8(7):e68317. PubMed ID: 23844185 [TBL] [Abstract][Full Text] [Related]
16. Lactose fermentation by engineered Saccharomyces cerevisiae capable of fermenting cellobiose. Liu JJ; Zhang GC; Oh EJ; Pathanibul P; Turner TL; Jin YS J Biotechnol; 2016 Sep; 234():99-104. PubMed ID: 27457698 [TBL] [Abstract][Full Text] [Related]
17. PHB production from cellobiose with Saccharomyces cerevisiae. Ylinen A; de Ruijter JC; Jouhten P; Penttilä M Microb Cell Fact; 2022 Jun; 21(1):124. PubMed ID: 35729556 [TBL] [Abstract][Full Text] [Related]
18. Direct conversion of cellulose into ethanol and ethyl-β-d-glucoside via engineered Saccharomyces cerevisiae. Jayakody LN; Liu JJ; Yun EJ; Turner TL; Oh EJ; Jin YS Biotechnol Bioeng; 2018 Dec; 115(12):2859-2868. PubMed ID: 30011361 [TBL] [Abstract][Full Text] [Related]
19. Single amino acid substitutions in HXT2.4 from Scheffersomyces stipitis lead to improved cellobiose fermentation by engineered Saccharomyces cerevisiae. Ha SJ; Kim H; Lin Y; Jang MU; Galazka JM; Kim TJ; Cate JH; Jin YS Appl Environ Microbiol; 2013 Mar; 79(5):1500-7. PubMed ID: 23263959 [TBL] [Abstract][Full Text] [Related]