These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 34949826)
1. The microbial gbu gene cluster links cardiovascular disease risk associated with red meat consumption to microbiota L-carnitine catabolism. Buffa JA; Romano KA; Copeland MF; Cody DB; Zhu W; Galvez R; Fu X; Ward K; Ferrell M; Dai HJ; Skye S; Hu P; Li L; Parlov M; McMillan A; Wei X; Nemet I; Koeth RA; Li XS; Wang Z; Sangwan N; Hajjar AM; Dwidar M; Weeks TL; Bergeron N; Krauss RM; Tang WHW; Rey FE; DiDonato JA; Gogonea V; Gerberick GF; Garcia-Garcia JC; Hazen SL Nat Microbiol; 2022 Jan; 7(1):73-86. PubMed ID: 34949826 [TBL] [Abstract][Full Text] [Related]
2. l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. Koeth RA; Lam-Galvez BR; Kirsop J; Wang Z; Levison BS; Gu X; Copeland MF; Bartlett D; Cody DB; Dai HJ; Culley MK; Li XS; Fu X; Wu Y; Li L; DiDonato JA; Tang WHW; Garcia-Garcia JC; Hazen SL J Clin Invest; 2019 Jan; 129(1):373-387. PubMed ID: 30530985 [TBL] [Abstract][Full Text] [Related]
3. Elucidation of an anaerobic pathway for metabolism of l-carnitine-derived γ-butyrobetaine to trimethylamine in human gut bacteria. Rajakovich LJ; Fu B; Bollenbach M; Balskus EP Proc Natl Acad Sci U S A; 2021 Aug; 118(32):. PubMed ID: 34362844 [TBL] [Abstract][Full Text] [Related]
4. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Koeth RA; Levison BS; Culley MK; Buffa JA; Wang Z; Gregory JC; Org E; Wu Y; Li L; Smith JD; Tang WHW; DiDonato JA; Lusis AJ; Hazen SL Cell Metab; 2014 Nov; 20(5):799-812. PubMed ID: 25440057 [TBL] [Abstract][Full Text] [Related]
5. Major Increase in Microbiota-Dependent Proatherogenic Metabolite TMAO One Year After Bariatric Surgery. Trøseid M; Hov JR; Nestvold TK; Thoresen H; Berge RK; Svardal A; Lappegård KT Metab Syndr Relat Disord; 2016 May; 14(4):197-201. PubMed ID: 27081744 [TBL] [Abstract][Full Text] [Related]
6. In older women, a high-protein diet including animal-sourced foods did not impact serum levels and urinary excretion of trimethylamine-N-oxide. Dahl WJ; Hung WL; Ford AL; Suh JH; Auger J; Nagulesapillai V; Wang Y Nutr Res; 2020 Jun; 78():72-81. PubMed ID: 32544852 [TBL] [Abstract][Full Text] [Related]
7. Dietary factors, gut microbiota, and serum trimethylamine-N-oxide associated with cardiovascular disease in the Hispanic Community Health Study/Study of Latinos. Mei Z; Chen GC; Wang Z; Usyk M; Yu B; Baeza YV; Humphrey G; Benitez RS; Li J; Williams-Nguyen JS; Daviglus ML; Hou L; Cai J; Zheng Y; Knight R; Burk RD; Boerwinkle E; Kaplan RC; Qi Q Am J Clin Nutr; 2021 Jun; 113(6):1503-1514. PubMed ID: 33709132 [TBL] [Abstract][Full Text] [Related]
8. Assembling the anaerobic gamma-butyrobetaine to TMA metabolic pathway in Dwidar M; Buffa JA; Wang Z; Santos A; Tittle AN; Fu X; Hajjar AM; DiDonato JA; Hazen SL mBio; 2023 Oct; 14(5):e0093723. PubMed ID: 37737636 [TBL] [Abstract][Full Text] [Related]
9. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Koeth RA; Wang Z; Levison BS; Buffa JA; Org E; Sheehy BT; Britt EB; Fu X; Wu Y; Li L; Smith JD; DiDonato JA; Chen J; Li H; Wu GD; Lewis JD; Warrier M; Brown JM; Krauss RM; Tang WH; Bushman FD; Lusis AJ; Hazen SL Nat Med; 2013 May; 19(5):576-85. PubMed ID: 23563705 [TBL] [Abstract][Full Text] [Related]
10. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. Wang Z; Bergeron N; Levison BS; Li XS; Chiu S; Jia X; Koeth RA; Li L; Wu Y; Tang WHW; Krauss RM; Hazen SL Eur Heart J; 2019 Feb; 40(7):583-594. PubMed ID: 30535398 [TBL] [Abstract][Full Text] [Related]
11. The Carnitine-butyrobetaine-trimethylamine-N-oxide pathway and its association with cardiovascular mortality in patients with carotid atherosclerosis. Skagen K; Trøseid M; Ueland T; Holm S; Abbas A; Gregersen I; Kummen M; Bjerkeli V; Reier-Nilsen F; Russell D; Svardal A; Karlsen TH; Aukrust P; Berge RK; Hov JE; Halvorsen B; Skjelland M Atherosclerosis; 2016 Apr; 247():64-9. PubMed ID: 26868510 [TBL] [Abstract][Full Text] [Related]
12. Identification of TMAO-producer phenotype and host-diet-gut dysbiosis by carnitine challenge test in human and germ-free mice. Wu WK; Chen CC; Liu PY; Panyod S; Liao BY; Chen PC; Kao HL; Kuo HC; Kuo CH; Chiu THT; Chen RA; Chuang HL; Huang YT; Zou HB; Hsu CC; Chang TY; Lin CL; Ho CT; Yu HT; Sheen LY; Wu MS Gut; 2019 Aug; 68(8):1439-1449. PubMed ID: 30377191 [TBL] [Abstract][Full Text] [Related]
13. Untargeted metabolomics identifies trimethyllysine, a TMAO-producing nutrient precursor, as a predictor of incident cardiovascular disease risk. Li XS; Wang Z; Cajka T; Buffa JA; Nemet I; Hurd AG; Gu X; Skye SM; Roberts AB; Wu Y; Li L; Shahen CJ; Wagner MA; Hartiala JA; Kerby RL; Romano KA; Han Y; Obeid S; Lüscher TF; Allayee H; Rey FE; DiDonato JA; Fiehn O; Tang WHW; Hazen SL JCI Insight; 2018 Mar; 3(6):. PubMed ID: 29563342 [TBL] [Abstract][Full Text] [Related]
14. Flavin monooxygenase 3, the host hepatic enzyme in the metaorganismal trimethylamine N-oxide-generating pathway, modulates platelet responsiveness and thrombosis risk. Zhu W; Buffa JA; Wang Z; Warrier M; Schugar R; Shih DM; Gupta N; Gregory JC; Org E; Fu X; Li L; DiDonato JA; Lusis AJ; Brown JM; Hazen SL J Thromb Haemost; 2018 Sep; 16(9):1857-1872. PubMed ID: 29981269 [TBL] [Abstract][Full Text] [Related]
15. Characterization of TMAO productivity from carnitine challenge facilitates personalized nutrition and microbiome signatures discovery. Wu WK; Panyod S; Liu PY; Chen CC; Kao HL; Chuang HL; Chen YH; Zou HB; Kuo HC; Kuo CH; Liao BY; Chiu THT; Chung CH; Lin AY; Lee YC; Tang SL; Wang JT; Wu YW; Hsu CC; Sheen LY; Orekhov AN; Wu MS Microbiome; 2020 Nov; 8(1):162. PubMed ID: 33213511 [TBL] [Abstract][Full Text] [Related]
16. Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation. Kuka J; Liepinsh E; Makrecka-Kuka M; Liepins J; Cirule H; Gustina D; Loza E; Zharkova-Malkova O; Grinberga S; Pugovics O; Dambrova M Life Sci; 2014 Nov; 117(2):84-92. PubMed ID: 25301199 [TBL] [Abstract][Full Text] [Related]
17. The carnitine-butyrobetaine-TMAO pathway after cardiac transplant: Impact on cardiac allograft vasculopathy and acute rejection. Trøseid M; Mayerhofer CCK; Broch K; Arora S; Svardal A; Hov JR; Andreassen AK; Gude E; Karason K; Dellgren G; Berge RK; Gullestad L; Aukrust P; Ueland T J Heart Lung Transplant; 2019 Oct; 38(10):1097-1103. PubMed ID: 31301965 [TBL] [Abstract][Full Text] [Related]
18. The use of an in-vitro batch fermentation (human colon) model for investigating mechanisms of TMA production from choline, L-carnitine and related precursors by the human gut microbiota. Day-Walsh P; Shehata E; Saha S; Savva GM; Nemeckova B; Speranza J; Kellingray L; Narbad A; Kroon PA Eur J Nutr; 2021 Oct; 60(7):3987-3999. PubMed ID: 33934200 [TBL] [Abstract][Full Text] [Related]
19. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. Romano KA; Vivas EI; Amador-Noguez D; Rey FE mBio; 2015 Mar; 6(2):e02481. PubMed ID: 25784704 [TBL] [Abstract][Full Text] [Related]
20. Metaorganismal nutrient metabolism as a basis of cardiovascular disease. Brown JM; Hazen SL Curr Opin Lipidol; 2014 Feb; 25(1):48-53. PubMed ID: 24362355 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]