These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34949905)

  • 1. Rapid Makerspace Microfabrication and Characterization of 3D Microelectrode Arrays (3D MEAs) for Organ-on-a-Chip Models.
    Didier CM; Kundu A; Rajaraman S
    J Microelectromech Syst; 2021; 30(6):853-863. PubMed ID: 34949905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of makerspace microfabrication techniques and materials for the realization of planar, 3D printed microelectrode arrays in under four days.
    Kundu A; Nattoo C; Fremgen S; Springer S; Ausaf T; Rajaraman S
    RSC Adv; 2019 Mar; 9(16):8949-8963. PubMed ID: 35517709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and Characterization of 3D Printed, 3D Microelectrode Arrays for Interfacing with a Peripheral Nerve-on-a-Chip.
    Kundu A; McCoy L; Azim N; Nguyen H; Didier CM; Ausaf T; Sharma AD; Curley JL; Moore MJ; Rajaraman S
    ACS Biomater Sci Eng; 2021 Jul; 7(7):3018-3029. PubMed ID: 34275292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Makerspace microfabrication of a stainless steel 3D microneedle electrode array (3D MEA) on a glass substrate for simultaneous optical and electrical probing of electrogenic cells.
    Morales-Carvajal PM; Kundu A; Didier CM; Hart C; Sommerhage F; Rajaraman S
    RSC Adv; 2020 Nov; 10(68):41577-41587. PubMed ID: 35516576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Printing, Ink Casting and Micromachined Lamination (3D PICLμM): A Makerspace Approach to the Fabrication of Biological Microdevices.
    Kundu A; Ausaf T; Rajaraman S
    Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of Planar Microelectrode Array Using Laser-Patterned ITO and SU-8.
    Jeong HS; Hwang S; Min KS; Jun SB
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Customizable 3D Microelectrode Arrays for In Vitro and In Vivo Neuronal Tissue Recordings.
    Abu Shihada J; Jung M; Decke S; Koschinski L; Musall S; Rincón Montes V; Offenhäusser A
    Adv Sci (Weinh); 2024 Apr; 11(13):e2305944. PubMed ID: 38240370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polydopamine surface functionalization of 3D printed resin material for enhanced polystyrene adhesion towards insulation layers for 3D microelectrode arrays (3D MEAs).
    Azim N; Orrico JF; Appavoo D; Zhai L; Rajaraman S
    RSC Adv; 2022 Sep; 12(39):25605-25616. PubMed ID: 36320408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully Integrated 3D Microelectrode Arrays with Polydopamine-Mediated Silicon Dioxide Insulation for Electrophysiological Interrogation of a Novel 3D Human, Neural Microphysiological Construct.
    Didier CM; Fox D; Pollard KJ; Baksh A; Iyer NR; Bosak A; Li Sip YY; Orrico JF; Kundu A; Ashton RS; Zhai L; Moore MJ; Rajaraman S
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):37157-37173. PubMed ID: 37494582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microelectrode arrays fabricated using a novel hybrid microfabrication method.
    Merlo MW; Snyder RL; Middlebrooks JC; Bachman M
    Biomed Microdevices; 2012 Feb; 14(1):193-205. PubMed ID: 21979567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and characterization of polyimide-based 'smooth' titanium nitride microelectrode arrays for neural stimulation and recording.
    Rodrigues F; Ribeiro JF; Anacleto PA; Fouchard A; David O; Sarro PM; Mendes PM
    J Neural Eng; 2019 Dec; 17(1):016010. PubMed ID: 31614339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-patterned epoxy-based 3D microelectrode arrays for extracellular recording.
    Peng H; Kopic I; Potfode SR; Teshima TF; Boustani GA; Hiendlmeier L; Wang C; Hussain MZ; Özkale B; Fischer RA; Wolfrum B
    Nanoscale; 2024 Jul; ():. PubMed ID: 39011647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Growth of Carbon Nanotubes on New High-Density 3D Pyramid-Shaped Microelectrode Arrays for Brain-Machine Interfaces.
    Ghane Motlagh B; Choueib M; Hajhosseini Mesgar A; Hasanuzzaman M; Sawan M
    Micromachines (Basel); 2016 Sep; 7(9):. PubMed ID: 30404335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly stretchable and customizable microneedle electrode arrays for intramuscular electromyography.
    Zhao Q; Gribkova E; Shen Y; Cui J; Naughton N; Liu L; Seo J; Tong B; Gazzola M; Gillette R; Zhao H
    Sci Adv; 2024 May; 10(18):eadn7202. PubMed ID: 38691612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D microelectrode arrays, pushing the bounds of sensitivity toward a generic platform for point-of-care diagnostics.
    Ko DH; Bates D; Karaosmanoglu H; Taredun K; Elton C; Jones L; Hosseini A; Partridge A
    Biosens Bioelectron; 2023 May; 227():115154. PubMed ID: 36801599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capabilities and limitations of 3D printed microserpentines and integrated 3D electrodes for stretchable and conformable biosensor applications.
    Didier C; Kundu A; Rajaraman S
    Microsyst Nanoeng; 2020; 6():15. PubMed ID: 34567630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of surface modification on microelectrode arrays for in vitro cell culture.
    Lin SP; Chen JJ; Liao JD; Tzeng SF
    Biomed Microdevices; 2008 Feb; 10(1):99-111. PubMed ID: 17674208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inkjet-Printed and Electroplated 3D Electrodes for Recording Extracellular Signals in Cell Culture.
    Grob L; Rinklin P; Zips S; Mayer D; Weidlich S; Terkan K; Weiß LJK; Adly N; Offenhäusser A; Wolfrum B
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34207725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micromachining on and of Transparent Polymers for Patterning Electrodes and Growing Electrically Active Cells for Biosensor Applications.
    Karnati C; Aguilar R; Arrowood C; Ross J; Rajaraman S
    Micromachines (Basel); 2017 Aug; 8(8):. PubMed ID: 30400441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon Nanotube-Based Printed All-Organic Microelectrode Arrays for Neural Stimulation and Recording.
    Murakami T; Yada N; Yoshida S
    Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.