These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 3495)

  • 21. Purification and characterization of the inactive Ca2+, Mg2+-activated adenosine triphosphatase of the unc A- mutant Escherichia coli AN120.
    Bragg PD; Hou C
    Arch Biochem Biophys; 1977 Jan; 178(2):486-94. PubMed ID: 13731
    [No Abstract]   [Full Text] [Related]  

  • 22. Studies on phosphate transport in Escherichia coli. II. Effects of metabolic inhibitors and divalent cations.
    Rae AS; Strickland KP
    Biochim Biophys Acta; 1976 May; 433(3):564-82. PubMed ID: 132192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Studies on (Na + -K + )-activated ATPase. XXX. Cation transport in Escherichia coli.
    Hafkenscheid JC; Bonting SL
    Comp Biochem Physiol B; 1971 Aug; 39(4):955-61. PubMed ID: 4257184
    [No Abstract]   [Full Text] [Related]  

  • 24. Restoration of active transport in an Mg2+-adenosine triphosphatase-deficient mutant of Escherichia coli.
    Rosen BP
    J Bacteriol; 1973 Dec; 116(3):1124-9. PubMed ID: 4270946
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The protonmotive force and beta-galactoside transport in Bacillus acidocaldarius.
    Krulwich TA; Davidson LF; Filip SJ; Zuckerman RS; Guffanti AA
    J Biol Chem; 1978 Jul; 253(13):4599-603. PubMed ID: 26685
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transport of alpha-methyl glucoside in mutants of Escherichia coli K12 deficient in Ca2+, Mg2+-activated adenosine triphosphatase.
    Campo FF; Hernández-Asensio M; Ramírez JM
    Biochem Biophys Res Commun; 1975 Apr; 63(4):1099-105. PubMed ID: 124171
    [No Abstract]   [Full Text] [Related]  

  • 27. Active transport of biotin in Escherichia coli K-12.
    Prakash O; Eisenberg MA
    J Bacteriol; 1974 Nov; 120(2):785-91. PubMed ID: 4616949
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of dicyclohexylcarbodiimide on growth and membrane-mediated processes in wild type and heptose-deficient mutants of Escherichia coli K-12.
    Singh AP; Bragg PD
    J Bacteriol; 1974 Jul; 119(1):129-37. PubMed ID: 4276056
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Active transport in mutants of Escherichia coli with alterations in the membrane ATPase complex.
    Or A; Kanner BI; Gutnick DL
    FEBS Lett; 1973 Sep; 35(2):217-9. PubMed ID: 4270368
    [No Abstract]   [Full Text] [Related]  

  • 30. Stopped-flow studies of salt-induced turbidity changes of Escherichia coli.
    Matts TC; Knowles CJ
    Biochim Biophys Acta; 1971 Dec; 249(2):583-7. PubMed ID: 4943976
    [No Abstract]   [Full Text] [Related]  

  • 31. Proton-coupled accumulation of galactoside in Streptococcus lactis 7962.
    Kashket ER; Wilson TH
    Proc Natl Acad Sci U S A; 1973 Oct; 70(10):2866-9. PubMed ID: 4200725
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence for binding protein-independent substrate translocation by the methylgalactoside transport system of Escherichia coli K12.
    Robbins AR; Rotman B
    Proc Natl Acad Sci U S A; 1975 Feb; 72(2):423-7. PubMed ID: 1091926
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Membrane potential generation in mutants of Escherichia coli with alterations in the membrane ATPase complex. studies on intact cells.
    Grinius L; Brazenaite J
    FEBS Lett; 1976 Feb; 62(2):186-9. PubMed ID: 130254
    [No Abstract]   [Full Text] [Related]  

  • 34. Selection procedure for mutants defective in the beta-methylgalactoside transport system of Escherichia coli utilizing the compound 2R-glyceryl-beta-D-galactopyranoside.
    Silhavy TJ; Boos W
    J Bacteriol; 1974 Oct; 120(1):424-32. PubMed ID: 4607764
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Active transport of beta-galactosides by a mutant of Escherichia coli defective in heme synthesis.
    Devor KA; Schairer HU; Renz D; Overath P
    Eur J Biochem; 1974 Jun; 45(2):451-6. PubMed ID: 4277345
    [No Abstract]   [Full Text] [Related]  

  • 36. Physiological change in the ionophore-portion of proton-translocating ATPase in an uncoupled mutant of Escherichia coli.
    Kanazawa H; Futai M
    FEBS Lett; 1979 Sep; 105(2):275-7. PubMed ID: 39783
    [No Abstract]   [Full Text] [Related]  

  • 37. Characterization and sequencing of an uncoupled lactose carrier mutant of Escherichia coli.
    Matos ME; Wilson TH
    Biochem Biophys Res Commun; 1994 Apr; 200(1):268-74. PubMed ID: 8166695
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energy coupling to K+ uptake via the Trk system in Escherichia coli: the role of ATP.
    Stewart LM; Bakker EP; Booth IR
    J Gen Microbiol; 1985 Jan; 131(1):77-85. PubMed ID: 3886836
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glycine uptake in Escherichia coli. II. Glycine uptake, exchange, and metabolism by an isolated membrane preparation.
    Kaback HR; Stadtman ER
    J Biol Chem; 1968 Apr; 243(7):1390-400. PubMed ID: 4869559
    [No Abstract]   [Full Text] [Related]  

  • 40. Roles of individual mgl gene products in the beta-methylgalactoside transport system of Escherichia coli K12.
    Robbins AR; Guzman R; Rotman B
    J Biol Chem; 1976 May; 251(10):3112-6. PubMed ID: 773938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.