These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 349503)

  • 1. Ability of modified forms of phenylalanine tRNA to stimulate guanosine pentaphosphate synthesis by the stringent factor-ribosome complex of E. coli.
    Ofengand J; Liou R
    Nucleic Acids Res; 1978 Apr; 5(4):1325-34. PubMed ID: 349503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the aminoacyl end of transfer RNA in the allosteric control of guanosine pentaphosphate synthesis by the stringent factor-ribosome complex of Escherichia coli.
    Chinali G; Liou R; Ofengand J
    Biochemistry; 1978 Jul; 17(14):2761-8. PubMed ID: 356874
    [No Abstract]   [Full Text] [Related]  

  • 3. Replacement of pseudouridine in transfer RNA by 5-fluorouridine does not affect the ability to stimulate the synthesis of guanosine 5'-triphosphate 3'-diphosphate.
    Chinali G; Horowitz J; Ofengand J
    Biochemistry; 1978 Jul; 17(14):2755-60. PubMed ID: 356873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free 3'-OH group of the terminal adenosine of the tRNA molecule is essential for the synthesis in vitro of guanosine tetraphosphate and pentaphosphate in a ribosomal system from Escherichia coli.
    Sprinzl M; Richter D
    Eur J Biochem; 1976 Dec; 71(1):171-6. PubMed ID: 795660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrimination between purine and pyrimidine base at the 3' terminus of the tRNA molecule by the stringent factor system from Escherichia coli.
    Richter D
    Biochem Biophys Res Commun; 1978 Mar; 81(2):359-65. PubMed ID: 352346
    [No Abstract]   [Full Text] [Related]  

  • 6. Eukaryotic ribosomal proteins stimulate Escherichia coli stringent factor to synthesize guanosine 5'-diphosphate, 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate, 3'-diphosphate (ppGpp).
    Martini O; Richter D
    Mol Gen Genet; 1978 Nov; 166(3):291-7. PubMed ID: 216901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ribosomal synthesis of guanosine tetra- and pentaphosphate with mRNAs of different chain length.
    Giesen M; Erdmann VA
    FEBS Lett; 1977 Nov; 83(1):125-7. PubMed ID: 336399
    [No Abstract]   [Full Text] [Related]  

  • 8. Template-independent synthesis of guanosine tetra- and pentaphosphates on ribosomes.
    Belitsina NV; Klyachko EV; Shakulov RS
    FEBS Lett; 1983 Oct; 162(1):39-42. PubMed ID: 6352335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of guanosine polyphosphates (pppGpp and ppGpp) and its regulation by aminoacyl-tRNA.
    Ogawa Y; Sy J
    J Biochem; 1977 Oct; 82(4):947-53. PubMed ID: 336616
    [No Abstract]   [Full Text] [Related]  

  • 10. Dissection of the mechanism for the stringent factor RelA.
    Wendrich TM; Blaha G; Wilson DN; Marahiel MA; Nierhaus KH
    Mol Cell; 2002 Oct; 10(4):779-88. PubMed ID: 12419222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The stringent control mechanism. Binding of uncharged tRNA and stringent factor to Escherichia coli ribosomes.
    Richter D
    Arch Biol Med Exp; 1976 Dec; 10(1-3):85-91. PubMed ID: 799921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of pppGpp by ribosomes from an Escherichia coli spoT mutant and the metabolic relationship between pppGpp and ppGpp.
    Leung KL; Yamazaki H
    Can J Biochem; 1977 Dec; 55(12):1207-12. PubMed ID: 340016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribosomal proteins of Escherichia coli that stimulate stringent-factor-mediated pyrophosphoryl transfer in vitro.
    Christiansen L; Neirhaus KH
    Proc Natl Acad Sci U S A; 1976 Jun; 73(6):1839-43. PubMed ID: 778846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methylgroups of ribosomal protein L11 are not related to the synthesis of ppGpp.
    Röhl R; Nierhaus KH
    Mol Gen Genet; 1979 Feb; 170(2):187-9. PubMed ID: 372761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photo-affinity labeling of tRNA binding sites in macromolecules. I. Linking of the phenacyl-p-azide of 4-thiouridine in (Escherichia coli) valyl-tRNA to 16S RNA at the ribosomal P site.
    Schwartz I; Ofengand J
    Proc Natl Acad Sci U S A; 1974 Oct; 71(10):3951-5. PubMed ID: 4610566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-UV stress in Salmonella typhimurium: 4-thiouridine in tRNA, ppGpp, and ApppGpp as components of an adaptive response.
    Kramer GF; Baker JC; Ames BN
    J Bacteriol; 1988 May; 170(5):2344-51. PubMed ID: 3283108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. E coli tRNAPhe modified at the 3-(3-amino-3-carboxypropyl) uridine with a photoaffinity label is fully functional for aminoacylation and for ribosomal interaction.
    Schwartz I; Ofengand J
    Biochim Biophys Acta; 1982 Jun; 697(3):330-5. PubMed ID: 7049245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stringent factor from Escherichia coli directs ribosomal binding and release of uncharged tRNA.
    Richter D
    Proc Natl Acad Sci U S A; 1976 Mar; 73(3):707-11. PubMed ID: 768983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of chemical modification of 3-(3-amino-3-carboxypropyl)uridine on tRNA function.
    Friedman S
    J Biol Chem; 1979 Aug; 254(15):7111-5. PubMed ID: 378998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introduction of antigenic determining 2,4-dinitrophenyl residues into 4-thiouridine, N3-(3-L-amino-3-carboxypropyl) uridine and tRNA-Phe from E. coli.
    Seela F; Hansske F; Watanabe K; Cramer F
    Nucleic Acids Res; 1977 Mar; 4(3):711-22. PubMed ID: 68463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.