BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34950493)

  • 1. Robust finite automata in stochastic chemical reaction networks.
    Arredondo D; Lakin MR
    R Soc Open Sci; 2021 Dec; 8(12):211310. PubMed ID: 34950493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning Automata-Based Multiagent Reinforcement Learning for Optimization of Cooperative Tasks.
    Zhang Z; Wang D; Gao J
    IEEE Trans Neural Netw Learn Syst; 2021 Oct; 32(10):4639-4652. PubMed ID: 33027003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized rough and fuzzy rough automata for semantic computing.
    Yadav S; Tiwari SP; Kumari M; Yadav VK
    Int J Mach Learn Cybern; 2022; 13(12):4013-4032. PubMed ID: 36164557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the implementation of frontier-to-root tree automata in recursive neural networks.
    Gori M; Küchler A; Sperduti A
    IEEE Trans Neural Netw; 1999; 10(6):1305-14. PubMed ID: 18252632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How Chemistry Computes: Language Recognition by Non-Biochemical Chemical Automata. From Finite Automata to Turing Machines.
    Dueñas-Díez M; Pérez-Mercader J
    iScience; 2019 Sep; 19():514-526. PubMed ID: 31442667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rule-based modelling and simulation of biochemical systems with molecular finite automata.
    Yang J; Meng X; Hlavacek WS
    IET Syst Biol; 2010 Nov; 4(6):453-66. PubMed ID: 21073243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale Hy3S: hybrid stochastic simulation for supercomputers.
    Salis H; Sotiropoulos V; Kaznessis YN
    BMC Bioinformatics; 2006 Feb; 7():93. PubMed ID: 16504125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesizing and tuning stochastic chemical reaction networks with specified behaviours.
    Murphy N; Petersen R; Phillips A; Yordanov B; Dalchau N
    J R Soc Interface; 2018 Aug; 15(145):. PubMed ID: 30111661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-vitro reconfigurability of native chemical automata, the inclusiveness of their hierarchy and their thermodynamics.
    Dueñas-Díez M; Pérez-Mercader J
    Sci Rep; 2020 Apr; 10(1):6814. PubMed ID: 32321965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vector Symbolic Finite State Machines in Attractor Neural Networks.
    Cotteret M; Greatorex H; Ziegler M; Chicca E
    Neural Comput; 2024 Mar; 36(4):549-595. PubMed ID: 38457766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. State-Regularized Recurrent Neural Networks to Extract Automata and Explain Predictions.
    Wang C; Lawrence C; Niepert M
    IEEE Trans Pattern Anal Mach Intell; 2023 Jun; 45(6):7739-7750. PubMed ID: 36445990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.
    Salis H; Kaznessis YN
    J Chem Phys; 2005 Dec; 123(21):214106. PubMed ID: 16356038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite state automata resulting from temporal information maximization and a temporal learning rule.
    Wennekers T; Ay N
    Neural Comput; 2005 Oct; 17(10):2258-90. PubMed ID: 16105225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient calculation of steady state probability distribution for stochastic biochemical reaction network.
    Karim S; Buzzard GT; Umulis DM
    BMC Genomics; 2012; 13 Suppl 6(Suppl 6):S10. PubMed ID: 23134718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finding and defining the natural automata acting in living plants: Toward the synthetic biology for robotics and informatics in vivo.
    Kawano T; Bouteau F; Mancuso S
    Commun Integr Biol; 2012 Nov; 5(6):519-26. PubMed ID: 23336016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abductive learning of quantized stochastic processes with probabilistic finite automata.
    Chattopadhyay I; Lipson H
    Philos Trans A Math Phys Eng Sci; 2013 Feb; 371(1984):20110543. PubMed ID: 23277601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive landscapes hidden beneath biological cellular automata.
    Koopmans L; Youk H
    J Biol Phys; 2021 Dec; 47(4):355-369. PubMed ID: 34739687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automata complete computation with Hodgkin-Huxley neural networks composed of synfire rings.
    Cabessa J; Tchaptchet A
    Neural Netw; 2020 Jun; 126():312-334. PubMed ID: 32278841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing.
    Chen BS; Hsu CY
    BMC Syst Biol; 2012 Oct; 6():136. PubMed ID: 23101662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A finite state projection algorithm for the stationary solution of the chemical master equation.
    Gupta A; Mikelson J; Khammash M
    J Chem Phys; 2017 Oct; 147(15):154101. PubMed ID: 29055349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.