These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34951017)

  • 1. Thermal tolerance in Drosophila: Repercussions for distribution, community coexistence and responses to climate change.
    Alruiz JM; Peralta-Maraver I; Bozinovic F; Santos M; Rezende EL
    J Anim Ecol; 2022 Mar; 91(3):655-667. PubMed ID: 34951017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species.
    Overgaard J; Kearney MR; Hoffmann AA
    Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the sensitivity of bivalve populations to global warming using an individual-based modelling approach.
    Thomas Y; Bacher C
    Glob Chang Biol; 2018 Oct; 24(10):4581-4597. PubMed ID: 30030873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological determinants of biogeography: The importance of metabolic depression to heat tolerance.
    Liao ML; Li GY; Wang J; Marshall DJ; Hui TY; Ma SY; Zhang YM; Helmuth B; Dong YW
    Glob Chang Biol; 2021 Jun; 27(11):2561-2579. PubMed ID: 33666308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat tolerance in Drosophila subobscura along a latitudinal gradient: Contrasting patterns between plastic and genetic responses.
    Castañeda LE; Rezende EL; Santos M
    Evolution; 2015 Oct; 69(10):2721-34. PubMed ID: 26292981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intraspecific variation in lizard heat tolerance alters estimates of climate impact.
    Herrando-Pérez S; Ferri-Yáñez F; Monasterio C; Beukema W; Gomes V; Belliure J; Chown SL; Vieites DR; Araújo MB
    J Anim Ecol; 2019 Feb; 88(2):247-257. PubMed ID: 30303530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporating population-level variation in thermal performance into predictions of geographic range shifts.
    Angert AL; Sheth SN; Paul JR
    Integr Comp Biol; 2011 Nov; 51(5):733-50. PubMed ID: 21705795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Male fertility thermal limits predict vulnerability to climate warming.
    van Heerwaarden B; Sgrò CM
    Nat Commun; 2021 Apr; 12(1):2214. PubMed ID: 33850157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological thermal limits predict differential responses of bees to urban heat-island effects.
    Hamblin AL; Youngsteadt E; López-Uribe MM; Frank SD
    Biol Lett; 2017 Jun; 13(6):. PubMed ID: 28637837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary and ecological patterns of thermal acclimation capacity in Drosophila: is it important for keeping up with climate change?
    Sørensen JG; Kristensen TN; Overgaard J
    Curr Opin Insect Sci; 2016 Oct; 17():98-104. PubMed ID: 27720081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Both life-history plasticity and local adaptation will shape range-wide responses to climate warming in the tundra plant Silene acaulis.
    Peterson ML; Doak DF; Morris WF
    Glob Chang Biol; 2018 Apr; 24(4):1614-1625. PubMed ID: 29155464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species.
    MacLean HJ; Sørensen JG; Kristensen TN; Loeschcke V; Beedholm K; Kellermann V; Overgaard J
    Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1778):20180548. PubMed ID: 31203763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat tolerance of marine ectotherms in a warming Antarctica.
    Molina AN; Pulgar JM; Rezende EL; Carter MJ
    Glob Chang Biol; 2023 Jan; 29(1):179-188. PubMed ID: 36045500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal variability alters the impact of climate warming on consumer-resource systems.
    Fey SB; Vasseur DA
    Ecology; 2016 Jul; 97(7):1690-1699. PubMed ID: 27859173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrasting environments shape thermal physiology across the spatial range of the sandhopper Talorchestia capensis.
    Baldanzi S; Weidberg NF; Fusi M; Cannicci S; McQuaid CD; Porri F
    Oecologia; 2015 Dec; 179(4):1067-78. PubMed ID: 26232091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal biases and vulnerability to warming in the world's marine fauna.
    Stuart-Smith RD; Edgar GJ; Barrett NS; Kininmonth SJ; Bates AE
    Nature; 2015 Dec; 528(7580):88-92. PubMed ID: 26560025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming.
    Magozzi S; Calosi P
    Glob Chang Biol; 2015 Jan; 21(1):181-94. PubMed ID: 25155644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute, diel, and annual temperature variability and the thermal biology of ectotherms.
    Kefford BJ; Ghalambor CK; Dewenter B; Poff NL; Hughes J; Reich J; Thompson R
    Glob Chang Biol; 2022 Dec; 28(23):6872-6888. PubMed ID: 36177681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental evolution on heat tolerance and thermal performance curves under contrasting thermal selection in Drosophila subobscura.
    Mesas A; Jaramillo A; Castañeda LE
    J Evol Biol; 2021 May; 34(5):767-778. PubMed ID: 33662149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is climate warming more consequential towards poles? The phenology of Lepidoptera in Finland.
    Valtonen A; Leinonen R; Pöyry J; Roininen H; Tuomela J; Ayres MP
    Glob Chang Biol; 2014 Jan; 20(1):16-27. PubMed ID: 24115266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.