These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 34951273)
1. [Applicability of multiple remotely sensed vegetation indices for extracting key phenological metrics of Zhou HQ; Bao G; Jin H; DU LT; Zhang SL; Xu ZW; Bao YH Ying Yong Sheng Tai Xue Bao; 2021 Dec; 32(12):4315-4326. PubMed ID: 34951273 [TBL] [Abstract][Full Text] [Related]
2. Spatiotemporal patterns of phenological metrics and their relationships with environmental drivers in grasslands. Wang Y; Liu Y; Zhou L; Zhou G Sci Total Environ; 2024 Aug; 938():173489. PubMed ID: 38796002 [TBL] [Abstract][Full Text] [Related]
3. [Extraction of temperate vegetation phenology thresholds in North America based on flux tower observation data]. Zhao JJ; Liu LY Ying Yong Sheng Tai Xue Bao; 2013 Feb; 24(2):311-8. PubMed ID: 23705372 [TBL] [Abstract][Full Text] [Related]
4. Analysis on ecological status and spatial-temporal variation of Tamarix chinensis forest based on spectral characteristics and remote sensing vegetation indices. Wang J; Han P; Zhang Y; Li J; Xu L; Shen X; Yang Z; Xu S; Li G; Chen F Environ Sci Pollut Res Int; 2022 May; 29(25):37315-37326. PubMed ID: 35050475 [TBL] [Abstract][Full Text] [Related]
5. [Differences of vegetation phenology monitoring by remote sensing based on different spectral vegetation indices.]. Zuo L; Wang HJ; Liu RG; Liu Y; Shang R Ying Yong Sheng Tai Xue Bao; 2018 Feb; 29(2):599-606. PubMed ID: 29692076 [TBL] [Abstract][Full Text] [Related]
6. Remotely sensed vegetation indices for crop nutrition mapping. Sharifi A J Sci Food Agric; 2020 Nov; 100(14):5191-5196. PubMed ID: 32530048 [TBL] [Abstract][Full Text] [Related]
7. Long-term trend in vegetation gross primary production, phenology and their relationships inferred from the FLUXNET data. Xu X; Du H; Fan W; Hu J; Mao F; Dong H J Environ Manage; 2019 Sep; 246():605-616. PubMed ID: 31202828 [TBL] [Abstract][Full Text] [Related]
8. Combined MODIS land surface temperature and greenness data for modeling vegetation phenology, physiology, and gross primary production in terrestrial ecosystems. Xu X; Zhou G; Du H; Mao F; Xu L; Li X; Liu L Sci Total Environ; 2020 Jul; 726():137948. PubMed ID: 32481215 [TBL] [Abstract][Full Text] [Related]
9. Improving the matching degree between remotely sensed phenological dates and physiological growing stages of soybean by a dynamic offset-adjustment strategy. Chen S; Yi Q; Wang F; Zheng J; Li J Sci Total Environ; 2024 Jan; 906():167783. PubMed ID: 37839478 [TBL] [Abstract][Full Text] [Related]
10. [Multi-factor Impact Analysis of Grassland Phenology Changes on the Qinghai-Xizang Plateau Based on Interpretable Machine Learning]. Liu HW; Liu H; Hu P; Peng H; Wang S Huan Jing Ke Xue; 2024 Jun; 45(6):3375-3388. PubMed ID: 38897759 [TBL] [Abstract][Full Text] [Related]
11. Seasonal patterns of canopy photosynthesis captured by remotely sensed sun-induced fluorescence and vegetation indexes in mid-to-high latitude forests: A cross-platform comparison. Lu X; Cheng X; Li X; Chen J; Sun M; Ji M; He H; Wang S; Li S; Tang J Sci Total Environ; 2018 Dec; 644():439-451. PubMed ID: 29981994 [TBL] [Abstract][Full Text] [Related]
12. Are phenological variations in natural teak (Tectona grandis) forests of India governed by rainfall? A remote sensing based investigation. Ghosh S; Nandy S; Mohanty S; Subba R; Kushwaha SPS Environ Monit Assess; 2020 Jan; 191(Suppl 3):786. PubMed ID: 31989274 [TBL] [Abstract][Full Text] [Related]
13. Impacts of climate change on vegetation phenology and net primary productivity in arid Central Asia. Wu L; Ma X; Dou X; Zhu J; Zhao C Sci Total Environ; 2021 Nov; 796():149055. PubMed ID: 34328878 [TBL] [Abstract][Full Text] [Related]
14. A stronger advance of urban spring vegetation phenology narrows vegetation productivity difference between urban settings and natural environments. Yang L; Zhao S Sci Total Environ; 2023 Apr; 868():161649. PubMed ID: 36657668 [TBL] [Abstract][Full Text] [Related]
15. Scaling photosynthetic function and CO Campbell P; Middleton E; Huemmrich K; Ward L; Julitta T; Yang P; van der Tol C; Daughtry C; Russ A; Alfieri J; Kustas W Data Brief; 2021 Dec; 39():107600. PubMed ID: 34901341 [TBL] [Abstract][Full Text] [Related]
16. Prediction of Crop Yield Using Phenological Information Extracted from Remote Sensing Vegetation Index. Ji Z; Pan Y; Zhu X; Wang J; Li Q Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671356 [TBL] [Abstract][Full Text] [Related]
17. Alpine vegetation phenology dynamic over 16years and its covariation with climate in a semi-arid region of China. Zhou J; Cai W; Qin Y; Lai L; Guan T; Zhang X; Jiang L; Du H; Yang D; Cong Z; Zheng Y Sci Total Environ; 2016 Dec; 572():119-128. PubMed ID: 27494658 [TBL] [Abstract][Full Text] [Related]
18. Estimating of gross primary production in an Amazon-Cerrado transitional forest using MODIS and Landsat imagery. Danelichen VH; Biudes MS; Velasque MC; Machado NG; Gomes RS; Vourlitis GL; Nogueira JS An Acad Bras Cienc; 2015 Sep; 87(3):1545-64. PubMed ID: 26221990 [TBL] [Abstract][Full Text] [Related]
19. Prediction of vegetation phenology with atmospheric reanalysis over semiarid grasslands in Inner Mongolia. Ma XQ; Leng P; Liao QY; Geng YJ; Zhang X; Shang GF; Song X; Song Q; Li ZL Sci Total Environ; 2022 Mar; 812():152462. PubMed ID: 34953826 [TBL] [Abstract][Full Text] [Related]
20. [Fraction of absorbed photosynthetically active radiation over summer maize canopy estimated by hyperspectral remote sensing under different drought conditions.]. Liu EH; Zhou GS; Zhou L Ying Yong Sheng Tai Xue Bao; 2019 Jun; 30(6):2021-2029. PubMed ID: 31257775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]