These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 34951299)

  • 1. Computational Investigation of the Interfacial Stability of Lithium Chloride Solid Electrolytes in All-Solid-State Lithium Batteries.
    Chun GH; Shim JH; Yu S
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1241-1248. PubMed ID: 34951299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-Principles Insights into Lithium-Rich Ternary Phosphide Superionic Conductors: Solid Electrolytes or Active Electrodes.
    Min Z; Yang C; Zhong GH; Lu Z
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18373-18382. PubMed ID: 35420418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical Design of Lithium Chloride Superionic Conductors for All-Solid-State High-Voltage Lithium-Ion Batteries.
    Park D; Park H; Lee Y; Kim SO; Jung HG; Chung KY; Shim JH; Yu S
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34806-34814. PubMed ID: 32643369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies for Enhancing the Stability of Lithium Metal Anodes in Solid-State Electrolytes.
    Lee H; Yoon T; Chae OB
    Micromachines (Basel); 2024 Mar; 15(4):. PubMed ID: 38675264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid.
    Yang C; Fu K; Zhang Y; Hitz E; Hu L
    Adv Mater; 2017 Sep; 29(36):. PubMed ID: 28741318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic Assessment of Coating Materials for Solid-State Li, Na, and K Batteries.
    Yu S; Park H; Siegel DJ
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36607-36615. PubMed ID: 31522493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fundamentals of the Cathode-Electrolyte Interface in All-solid-state Lithium Batteries.
    Jiang Y; Lai A; Ma J; Yu K; Zeng H; Zhang G; Huang W; Wang C; Chi SS; Wang J; Deng Y
    ChemSusChem; 2023 May; 16(9):e202202156. PubMed ID: 36715574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Negating interfacial impedance in garnet-based solid-state Li metal batteries.
    Han X; Gong Y; Fu KK; He X; Hitz GT; Dai J; Pearse A; Liu B; Wang H; Rubloff G; Mo Y; Thangadurai V; Wachsman ED; Hu L
    Nat Mater; 2017 May; 16(5):572-579. PubMed ID: 27992420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries.
    Zhou L; Minafra N; Zeier WG; Nazar LF
    Acc Chem Res; 2021 Jun; 54(12):2717-2728. PubMed ID: 34032414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Insights into the Effects of Zr Substitution and Carbon Additive on Li
    Shao Q; Yan C; Gao M; Du W; Chen J; Yang Y; Gan J; Wu Z; Sun W; Jiang Y; Liu Y; Gao M; Pan H
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):8095-8105. PubMed ID: 35113524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review on Modeling for Chemo-mechanical Behavior at Interfaces of All-Solid-State Lithium-Ion Batteries and Beyond.
    Tian J; Chen Z; Zhao Y
    ACS Omega; 2022 Mar; 7(8):6455-6462. PubMed ID: 35252641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the Interfacial Stability of the Li
    Gao C; Zhang J; He C; Kang S; Tan L; Jiao Q; Xu T; Dai S; Lin C
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1392-1400. PubMed ID: 36583680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries.
    Wu JF; Pang WK; Peterson VK; Wei L; Guo X
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12461-12468. PubMed ID: 28332828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Chloride Ion Substitution on Lithium-Ion Conductivity and Electrochemical Stability in a Dual-Halogen Solid-State Electrolyte.
    Umeshbabu E; Maddukuri S; Hu Y; Fichtner M; Munnangi AR
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25448-25456. PubMed ID: 35623091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable All-Solid-State Lithium Metal Batteries Enabled by Machine Learning Simulation Designed Halide Electrolytes.
    Li F; Cheng X; Lu LL; Yin YC; Luo JD; Lu G; Meng YF; Mo H; Tian T; Yang JT; Wen W; Liu ZP; Zhang G; Shang C; Yao HB
    Nano Lett; 2022 Mar; 22(6):2461-2469. PubMed ID: 35244400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Mg Compounds as Coating Materials in Mg Batteries.
    Chen T; Ceder G; Sai Gautam G; Canepa P
    Front Chem; 2019; 7():24. PubMed ID: 30761292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extended Electrochemical Window of Solid Electrolytes via Heterogeneous Multilayered Structure for High-Voltage Lithium Metal Batteries.
    Duan H; Fan M; Chen WP; Li JY; Wang PF; Wang WP; Shi JL; Yin YX; Wan LJ; Guo YG
    Adv Mater; 2019 Mar; 31(12):e1807789. PubMed ID: 30702774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges and Strategies towards Practically Feasible Solid-State Lithium Metal Batteries.
    Yoon K; Lee S; Oh K; Kang K
    Adv Mater; 2022 Jan; 34(4):e2104666. PubMed ID: 34747060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward High-Energy-Density Lithium Metal Batteries: Opportunities and Challenges for Solid Organic Electrolytes.
    Wang X; Kerr R; Chen F; Goujon N; Pringle JM; Mecerreyes D; Forsyth M; Howlett PC
    Adv Mater; 2020 May; 32(18):e1905219. PubMed ID: 31961989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.