BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 34951590)

  • 21. Protein Adsorption on Solid Supported Membranes: Monitoring the Transport Activity of P-Type ATPases.
    Tadini-Buoninsegni F
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32933017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure of the ATP binding domain from the Archaeoglobus fulgidus Cu+-ATPase.
    Sazinsky MH; Mandal AK; Argüello JM; Rosenzweig AC
    J Biol Chem; 2006 Apr; 281(16):11161-6. PubMed ID: 16495228
    [TBL] [Abstract][Full Text] [Related]  

  • 23. AtHMA1 is a thapsigargin-sensitive Ca2+/heavy metal pump.
    Moreno I; Norambuena L; Maturana D; Toro M; Vergara C; Orellana A; Zurita-Silva A; Ordenes VR
    J Biol Chem; 2008 Apr; 283(15):9633-41. PubMed ID: 18252706
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In silico identification and characterization of the ion transport specificity for P-type ATPases in the Mycobacterium tuberculosis complex.
    Novoa-Aponte L; León-Torres A; Patiño-Ruiz M; Cuesta-Bernal J; Salazar LM; Landsman D; Mariño-Ramírez L; Soto CY
    BMC Struct Biol; 2012 Oct; 12():25. PubMed ID: 23031689
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of functionally important conserved trans-membrane residues of bacterial PIB -type ATPases.
    Zhitnitsky D; Lewinson O
    Mol Microbiol; 2014 Feb; 91(4):777-89. PubMed ID: 24350798
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast-forward on P-type ATPases: recent advances on structure and function.
    Stock C; Heger T; Basse Hansen S; Thirup Larsen S; Habeck M; Dieudonné T; Driller R; Nissen P
    Biochem Soc Trans; 2023 Jun; 51(3):1347-1360. PubMed ID: 37264943
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Zinc binding to the NH2-terminal domain of the Wilson disease copper-transporting ATPase: implications for in vivo metal ion-mediated regulation of ATPase activity.
    DiDonato M; Zhang J; Que L; Sarkar B
    J Biol Chem; 2002 Apr; 277(16):13409-14. PubMed ID: 11823463
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural model of the CopA copper ATPase of Enterococcus hirae based on chemical cross-linking.
    Lübben M; Portmann R; Kock G; Stoll R; Young MM; Solioz M
    Biometals; 2009 Apr; 22(2):363-75. PubMed ID: 18979168
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metal Selectivity of a Cd-, Co-, and Zn-Transporting P
    Smith AT; Ross MO; Hoffman BM; Rosenzweig AC
    Biochemistry; 2017 Jan; 56(1):85-95. PubMed ID: 28001366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cation Diffusion Facilitator family: Structure and function.
    Kolaj-Robin O; Russell D; Hayes KA; Pembroke JT; Soulimane T
    FEBS Lett; 2015 May; 589(12):1283-95. PubMed ID: 25896018
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Role of ZntA in Klebsiella pneumoniae Zinc Homeostasis.
    Maunders EA; Ganio K; Hayes AJ; Neville SL; Davies MR; Strugnell RA; McDevitt CA; Tan A
    Microbiol Spectr; 2022 Feb; 10(1):e0177321. PubMed ID: 35019689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The P-type ATPase CtpG preferentially transports Cd
    López M; Quitian LV; Calderón MN; Soto CY
    Arch Microbiol; 2018 Apr; 200(3):483-492. PubMed ID: 29197950
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Arabidopsis HMA2, a divalent heavy metal-transporting P(IB)-type ATPase, is involved in cytoplasmic Zn2+ homeostasis.
    Eren E; Argüello JM
    Plant Physiol; 2004 Nov; 136(3):3712-23. PubMed ID: 15475410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bacterial heavy metal resistance: new surprises.
    Silver S; Phung LT
    Annu Rev Microbiol; 1996; 50():753-89. PubMed ID: 8905098
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal ion transport and regulation in Mycobacterium tuberculosis.
    Agranoff D; Krishna S
    Front Biosci; 2004 Sep; 9():2996-3006. PubMed ID: 15353332
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystal structures of a ZIP zinc transporter reveal a binuclear metal center in the transport pathway.
    Zhang T; Liu J; Fellner M; Zhang C; Sui D; Hu J
    Sci Adv; 2017 Aug; 3(8):e1700344. PubMed ID: 28875161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The mechanism of Cu+ transport ATPases: interaction with CU+ chaperones and the role of transient metal-binding sites.
    Padilla-Benavides T; McCann CJ; Argüello JM
    J Biol Chem; 2013 Jan; 288(1):69-78. PubMed ID: 23184962
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacterial ATP-driven transporters of transition metals: physiological roles, mechanisms of action, and roles in bacterial virulence.
    Klein JS; Lewinson O
    Metallomics; 2011 Nov; 3(11):1098-108. PubMed ID: 21901186
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function.
    Raimunda D; González-Guerrero M; Leeber BW; Argüello JM
    Biometals; 2011 Jun; 24(3):467-75. PubMed ID: 21210186
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel heavy metal ATPase peptide from Prosopis juliflora is involved in metal uptake in yeast and tobacco.
    Keeran NS; Ganesan G; Parida AK
    Transgenic Res; 2017 Apr; 26(2):247-261. PubMed ID: 27888434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.