BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 34951590)

  • 41. Metal-induced conformational changes in ZneB suggest an active role of membrane fusion proteins in efflux resistance systems.
    De Angelis F; Lee JK; O'Connell JD; Miercke LJ; Verschueren KH; Srinivasan V; Bauvois C; Govaerts C; Robbins RA; Ruysschaert JM; Stroud RM; Vandenbussche G
    Proc Natl Acad Sci U S A; 2010 Jun; 107(24):11038-43. PubMed ID: 20534468
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A new metal binding domain involved in cadmium, cobalt and zinc transport.
    Smith AT; Barupala D; Stemmler TL; Rosenzweig AC
    Nat Chem Biol; 2015 Sep; 11(9):678-84. PubMed ID: 26192600
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Diverse roles of the metal binding domains and transport mechanism of copper transporting P-type ATPases.
    Guo Z; Orädd F; Bågenholm V; Grønberg C; Ma JF; Ott P; Wang Y; Andersson M; Pedersen PA; Wang K; Gourdon P
    Nat Commun; 2024 Mar; 15(1):2690. PubMed ID: 38538615
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains.
    Zimmermann M; Clarke O; Gulbis JM; Keizer DW; Jarvis RS; Cobbett CS; Hinds MG; Xiao Z; Wedd AG
    Biochemistry; 2009 Dec; 48(49):11640-54. PubMed ID: 19883117
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functional expression of AtHMA4, a P1B-type ATPase of the Zn/Co/Cd/Pb subclass.
    Mills RF; Krijger GC; Baccarini PJ; Hall JL; Williams LE
    Plant J; 2003 Jul; 35(2):164-76. PubMed ID: 12848823
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular characterization of a rice metal tolerance protein, OsMTP1.
    Yuan L; Yang S; Liu B; Zhang M; Wu K
    Plant Cell Rep; 2012 Jan; 31(1):67-79. PubMed ID: 21892614
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The two-domain elevator-type mechanism of zinc-transporting ZIP proteins.
    Wiuf A; Steffen JH; Becares ER; Grønberg C; Mahato DR; Rasmussen SGF; Andersson M; Croll T; Gotfryd K; Gourdon P
    Sci Adv; 2022 Jul; 8(28):eabn4331. PubMed ID: 35857505
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Copper-transporting ATPases: The evolutionarily conserved machineries for balancing copper in living systems.
    Migocka M
    IUBMB Life; 2015 Oct; 67(10):737-45. PubMed ID: 26422816
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bacterial transition metal P(1B)-ATPases: transport mechanism and roles in virulence.
    Argüello JM; González-Guerrero M; Raimunda D
    Biochemistry; 2011 Nov; 50(46):9940-9. PubMed ID: 21999638
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Copper-transporting P-type ATPases use a unique ion-release pathway.
    Andersson M; Mattle D; Sitsel O; Klymchuk T; Nielsen AM; Møller LB; White SH; Nissen P; Gourdon P
    Nat Struct Mol Biol; 2014 Jan; 21(1):43-8. PubMed ID: 24317491
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Copper transport and its defect in Wilson disease: characterization of the copper-binding domain of Wilson disease ATPase.
    Sarkar B
    J Inorg Biochem; 2000 Apr; 79(1-4):187-91. PubMed ID: 10830865
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Serine phosphorylation regulates the P-type potassium pump KdpFABC.
    Sweet ME; Zhang X; Erdjument-Bromage H; Dubey V; Khandelia H; Neubert TA; Pedersen BP; Stokes DL
    Elife; 2020 Sep; 9():. PubMed ID: 32955430
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural Basis of Substrate-Independent Phosphorylation in a P4-ATPase Lipid Flippase.
    Timcenko M; Dieudonné T; Montigny C; Boesen T; Lyons JA; Lenoir G; Nissen P
    J Mol Biol; 2021 Aug; 433(16):167062. PubMed ID: 34023399
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular mechanisms of plant metal tolerance and homeostasis.
    Clemens S
    Planta; 2001 Mar; 212(4):475-86. PubMed ID: 11525504
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Independent evolution of heavy metal-associated domains in copper chaperones and copper-transporting atpases.
    Jordan IK; Natale DA; Koonin EV; Galperin MY
    J Mol Evol; 2001 Dec; 53(6):622-33. PubMed ID: 11677622
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metallochaperones and metal-transporting ATPases: a comparative analysis of sequences and structures.
    Arnesano F; Banci L; Bertini I; Ciofi-Baffoni S; Molteni E; Huffman DL; O'Halloran TV
    Genome Res; 2002 Feb; 12(2):255-71. PubMed ID: 11827945
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization and comparison of metal accumulation in two Escherichia coli strains expressing either CopA or MntA, heavy metal-transporting bacterial P-type adenosine triphosphatases.
    Zagorski N; Wilson DB
    Appl Biochem Biotechnol; 2004 Apr; 117(1):33-48. PubMed ID: 15126702
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Distinct functions of serial metal-binding domains in the Escherichia coli P1 B -ATPase CopA.
    Drees SL; Beyer DF; Lenders-Lomscher C; Lübben M
    Mol Microbiol; 2015 Aug; 97(3):423-38. PubMed ID: 25899340
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase.
    Papoyan A; Kochian LV
    Plant Physiol; 2004 Nov; 136(3):3814-23. PubMed ID: 15516513
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metals in biomass: from the biological system of elements to reasons of fractionation and element use.
    Fränzle S; Markert B
    Environ Sci Pollut Res Int; 2007 Sep; 14(6):404-13. PubMed ID: 17993224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.