BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 34951590)

  • 61. Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity.
    Montanini B; Blaudez D; Jeandroz S; Sanders D; Chalot M
    BMC Genomics; 2007 Apr; 8():107. PubMed ID: 17448255
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Implications of metal accumulation mechanisms to phytoremediation.
    Memon AR; Schröder P
    Environ Sci Pollut Res Int; 2009 Mar; 16(2):162-75. PubMed ID: 19067014
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Molecular and biochemical properties of two P1B2-ATPases, CsHMA3 and CsHMA4, from cucumber.
    Migocka M; Papierniak A; Maciaszczyk-Dziubinska E; Posyniak E; Kosieradzka A
    Plant Cell Environ; 2015 Jun; 38(6):1127-41. PubMed ID: 25210955
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Changes in the relative occupancy of metal-binding sites in the profile structure of the sarcoplasmic reticulum membrane induced by phosphorylation of the Ca2+ATPase enzyme in the presence of terbium: a time-resolved, resonance x-ray diffraction study.
    Asturias FJ; Fischetti RF; Blasie JK
    Biophys J; 1994 May; 66(5):1665-77. PubMed ID: 8061215
    [TBL] [Abstract][Full Text] [Related]  

  • 65. HvHMA2, a P(1B)-ATPase from barley, is highly conserved among cereals and functions in Zn and Cd transport.
    Mills RF; Peaston KA; Runions J; Williams LE
    PLoS One; 2012; 7(8):e42640. PubMed ID: 22880063
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Properties of the mammalian and yeast metal-ion transporters DCT1 and Smf1p expressed in Xenopus laevis oocytes.
    Sacher A; Cohen A; Nelson N
    J Exp Biol; 2001 Mar; 204(Pt 6):1053-61. PubMed ID: 11222124
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Characterization of the PIB-Type ATPases present in Thermus thermophilus.
    Schurig-Briccio LA; Gennis RB
    J Bacteriol; 2012 Aug; 194(15):4107-13. PubMed ID: 22636781
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Newer systems for bacterial resistances to toxic heavy metals.
    Silver S; Ji G
    Environ Health Perspect; 1994 Sep; 102 Suppl 3(Suppl 3):107-13. PubMed ID: 7843081
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals.
    Lee J; Bae H; Jeong J; Lee JY; Yang YY; Hwang I; Martinoia E; Lee Y
    Plant Physiol; 2003 Oct; 133(2):589-96. PubMed ID: 14512517
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Amino Acid Features of P1B-ATPase Heavy Metal Transporters Enabling Small Numbers of Organisms to Cope with Heavy Metal Pollution.
    Ashrafi E; Alemzadeh A; Ebrahimi M; Ebrahimie E; Dadkhodaei N; Ebrahimi M
    Bioinform Biol Insights; 2011 Apr; 5():59-82. PubMed ID: 21573033
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Characterization of a heavy metal ATPase from the apicomplexan Cryptosporidium parvum.
    LaGier MJ; Zhu G; Keithly JS
    Gene; 2001 Mar; 266(1-2):25-34. PubMed ID: 11290416
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Metal ion homeostasis and intracellular parasitism.
    Agranoff DD; Krishna S
    Mol Microbiol; 1998 May; 28(3):403-12. PubMed ID: 9632246
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Expression and mutagenesis of ZntA, a zinc-transporting P-type ATPase from Escherichia coli.
    Okkeri J; Haltia T
    Biochemistry; 1999 Oct; 38(42):14109-16. PubMed ID: 10529259
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Molecular mechanism of copper transport in Wilson disease.
    Fatemi N; Sarkar B
    Environ Health Perspect; 2002 Oct; 110 Suppl 5(Suppl 5):695-8. PubMed ID: 12426114
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A CLC-ec1 mutant reveals global conformational change and suggests a unifying mechanism for the CLC Cl
    Chavan TS; Cheng RC; Jiang T; Mathews II; Stein RA; Koehl A; Mchaourab HS; Tajkhorshid E; Maduke M
    Elife; 2020 Apr; 9():. PubMed ID: 32310757
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Nucleotide recognition by CopA, a Cu+-transporting P-type ATPase.
    Tsuda T; Toyoshima C
    EMBO J; 2009 Jun; 28(12):1782-91. PubMed ID: 19478797
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [Heavy metal-transport proteins in plants: a review].
    Jin F; Wang C; Lin HJ; Shen YO; Zhang ZM; Zhao MJ; Pan GT
    Ying Yong Sheng Tai Xue Bao; 2010 Jul; 21(7):1875-82. PubMed ID: 20879550
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
    Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E
    Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Structural basis for metal binding specificity: the N-terminal cadmium binding domain of the P1-type ATPase CadA.
    Banci L; Bertini I; Ciofi-Baffoni S; Su XC; Miras R; Bal N; Mintz E; Catty P; Shokes JE; Scott RA
    J Mol Biol; 2006 Feb; 356(3):638-50. PubMed ID: 16388822
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    Christenson ET; Gallegos AS; Banerjee A
    J Biol Chem; 2018 Mar; 293(10):3819-3828. PubMed ID: 29305420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.