These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34951628)

  • 1. DeepSVP: integration of genotype and phenotype for structural variant prioritization using deep learning.
    Althagafi A; Alsubaie L; Kathiresan N; Mineta K; Aloraini T; Al Mutairi F; Alfadhel M; Gojobori T; Alfares A; Hoehndorf R
    Bioinformatics; 2022 Mar; 38(6):1677-1684. PubMed ID: 34951628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prioritizing genomic variants through neuro-symbolic, knowledge-enhanced learning.
    Althagafi A; Zhapa-Camacho F; Hoehndorf R
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38696757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting candidate genes from phenotypes, functions and anatomical site of expression.
    Chen J; Althagafi A; Hoehndorf R
    Bioinformatics; 2021 May; 37(6):853-860. PubMed ID: 33051643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepPVP: phenotype-based prioritization of causative variants using deep learning.
    Boudellioua I; Kulmanov M; Schofield PN; Gkoutos GV; Hoehndorf R
    BMC Bioinformatics; 2019 Feb; 20(1):65. PubMed ID: 30727941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Relative Power of Structural Genomic Variation versus SNPs in Explaining the Quantitative Trait Growth in the Marine Teleost
    Ruigrok M; Xue B; Catanach A; Zhang M; Jesson L; Davy M; Wellenreuther M
    Genes (Basel); 2022 Jun; 13(7):. PubMed ID: 35885912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OVA: integrating molecular and physical phenotype data from multiple biomedical domain ontologies with variant filtering for enhanced variant prioritization.
    Antanaviciute A; Watson CM; Harrison SM; Lascelles C; Crinnion L; Markham AF; Bonthron DT; Carr IM
    Bioinformatics; 2015 Dec; 31(23):3822-9. PubMed ID: 26272982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Varmole: a biologically drop-connect deep neural network model for prioritizing disease risk variants and genes.
    Nguyen ND; Jin T; Wang D
    Bioinformatics; 2021 Jul; 37(12):1772-1775. PubMed ID: 33031552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DeepGAMI: deep biologically guided auxiliary learning for multimodal integration and imputation to improve genotype-phenotype prediction.
    Chandrashekar PB; Alatkar S; Wang J; Hoffman GE; He C; Jin T; Khullar S; Bendl J; Fullard JF; Roussos P; Wang D
    Genome Med; 2023 Oct; 15(1):88. PubMed ID: 37904203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Starvar: symptom-based tool for automatic ranking of variants using evidence from literature and genomes.
    Kafkas Ș; Abdelhakim M; Uludag M; Althagafi A; Alghamdi M; Hoehndorf R
    BMC Bioinformatics; 2023 Jul; 24(1):294. PubMed ID: 37479972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning predicts the impact of regulatory variants on cell-type-specific enhancers in the brain.
    Zheng A; Shen Z; Glass CK; Gymrek M
    Bioinform Adv; 2023; 3(1):vbad002. PubMed ID: 36726730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MetaRNN: differentiating rare pathogenic and rare benign missense SNVs and InDels using deep learning.
    Li C; Zhi D; Wang K; Liu X
    Genome Med; 2022 Oct; 14(1):115. PubMed ID: 36209109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of evolutionary constraint by genomic annotations improves functional prioritization of genomic variants in maize.
    Ramstein GP; Buckler ES
    Genome Biol; 2022 Sep; 23(1):183. PubMed ID: 36050782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting deep transfer learning for the prediction of functional non-coding variants using genomic sequence.
    Chen L; Wang Y; Zhao F
    Bioinformatics; 2022 Jun; 38(12):3164-3172. PubMed ID: 35389435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using the structure of genome data in the design of deep neural networks for predicting amyotrophic lateral sclerosis from genotype.
    Yin B; Balvert M; van der Spek RAA; Dutilh BE; Bohté S; Veldink J; Schönhuth A
    Bioinformatics; 2019 Jul; 35(14):i538-i547. PubMed ID: 31510706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geographic distribution and adaptive significance of genomic structural variants: an anthropological genetics perspective.
    Eaaswarkhanth M; Pavlidis P; Gokcumen O
    Hum Biol; 2014; 86(4):260-75. PubMed ID: 25959693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining artificial intelligence: deep learning with Hi-C data to predict the functional effects of non-coding variants.
    Meng XH; Xiao HM; Deng HW
    Bioinformatics; 2021 Jun; 37(10):1339-1344. PubMed ID: 33196774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene prioritization using Bayesian matrix factorization with genomic and phenotypic side information.
    Zakeri P; Simm J; Arany A; ElShal S; Moreau Y
    Bioinformatics; 2018 Jul; 34(13):i447-i456. PubMed ID: 29949967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting target genes of non-coding regulatory variants with IRT.
    Wu Z; Ioannidis NM; Zou J
    Bioinformatics; 2020 Aug; 36(16):4440-4448. PubMed ID: 32330225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SVIM: structural variant identification using mapped long reads.
    Heller D; Vingron M
    Bioinformatics; 2019 Sep; 35(17):2907-2915. PubMed ID: 30668829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying functional impact of non-coding variants with multi-task Bayesian neural network.
    Xu C; Liu Q; Zhou J; Xie M; Feng J; Jiang T
    Bioinformatics; 2020 Mar; 36(5):1397-1404. PubMed ID: 31693090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.