BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34951681)

  • 1. A cascaded fully convolutional network framework for dilated pancreatic duct segmentation.
    Shen C; Roth HR; Hayashi Y; Oda M; Miyamoto T; Sato G; Mori K
    Int J Comput Assist Radiol Surg; 2022 Feb; 17(2):343-354. PubMed ID: 34951681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anatomical attention can help to segment the dilated pancreatic duct in abdominal CT.
    Shen C; Roth HR; Hayashi Y; Oda M; Sato G; Miyamoto T; Rueckert D; Mori K
    Int J Comput Assist Radiol Surg; 2024 Apr; 19(4):655-664. PubMed ID: 38498132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CTG-Net: an efficient cascaded framework driven by terminal guidance mechanism for dilated pancreatic duct segmentation.
    Zou L; Cai Z; Qiu Y; Gui L; Mao L; Yang X
    Phys Med Biol; 2023 Oct; 68(21):. PubMed ID: 37586389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An application of cascaded 3D fully convolutional networks for medical image segmentation.
    Roth HR; Oda H; Zhou X; Shimizu N; Yang Y; Hayashi Y; Oda M; Fujiwara M; Misawa K; Mori K
    Comput Med Imaging Graph; 2018 Jun; 66():90-99. PubMed ID: 29573583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vessel segmentation from volumetric images: a multi-scale double-pathway network with class-balanced loss at the voxel level.
    Chen Y; Fan S; Chen Y; Che C; Cao X; He X; Song X; Zhao F
    Med Phys; 2021 Jul; 48(7):3804-3814. PubMed ID: 33969487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Segmentation of pancreatic ductal adenocarcinoma (PDAC) and surrounding vessels in CT images using deep convolutional neural networks and texture descriptors.
    Mahmoudi T; Kouzahkanan ZM; Radmard AR; Kafieh R; Salehnia A; Davarpanah AH; Arabalibeik H; Ahmadian A
    Sci Rep; 2022 Feb; 12(1):3092. PubMed ID: 35197542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graph-enhanced U-Net for semi-supervised segmentation of pancreas from abdomen CT scan.
    Liu S; Liang S; Huang X; Yuan X; Zhong T; Zhang Y
    Phys Med Biol; 2022 Jul; 67(15):. PubMed ID: 35892477
    [No Abstract]   [Full Text] [Related]  

  • 9. Extension-contraction transformation network for pancreas segmentation in abdominal CT scans.
    Zheng Y; Luo J
    Comput Biol Med; 2023 Jan; 152():106410. PubMed ID: 36516578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MAD-UNet: A deep U-shaped network combined with an attention mechanism for pancreas segmentation in CT images.
    Li W; Qin S; Li F; Wang L
    Med Phys; 2021 Jan; 48(1):329-341. PubMed ID: 33222222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-scale U-like network with attention mechanism for automatic pancreas segmentation.
    Yan Y; Zhang D
    PLoS One; 2021; 16(5):e0252287. PubMed ID: 34043732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation.
    Roth HR; Lu L; Lay N; Harrison AP; Farag A; Sohn A; Summers RM
    Med Image Anal; 2018 Apr; 45():94-107. PubMed ID: 29427897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abdominal artery segmentation method from CT volumes using fully convolutional neural network.
    Oda M; Roth HR; Kitasaka T; Misawa K; Fujiwara M; Mori K
    Int J Comput Assist Radiol Surg; 2019 Dec; 14(12):2069-2081. PubMed ID: 31493112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volumetric segmentation of ground glass nodule based on 3D attentional cascaded residual U-Net and conditional random field.
    Chen H; Liu J; Lu L; Wang T; Xu X; Chu A; Peng W; Gong J; Tang W; Gu Y
    Med Phys; 2022 Feb; 49(2):1097-1107. PubMed ID: 34951492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep neural network-based segmentation of normal and abnormal pancreas on abdominal CT: evaluation of global and local accuracies.
    Kawamoto S; Zhu Z; Chu LC; Javed AA; Kinny-Köster B; Wolfgang CL; Hruban RH; Kinzler KW; Fouladi DF; Blanco A; Shayesteh S; Fishman EK
    Abdom Radiol (NY); 2024 Feb; 49(2):501-511. PubMed ID: 38102442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance improvement of weakly supervised fully convolutional networks by skip connections for brain structure segmentation.
    Sugino T; Roth HR; Oda M; Kin T; Saito N; Nakajima Y; Mori K
    Med Phys; 2021 Nov; 48(11):7215-7227. PubMed ID: 34453333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pancreas segmentation using a dual-input v-mesh network.
    Wang Y; Gong G; Kong D; Li Q; Dai J; Zhang H; Qu J; Liu X; Xue J
    Med Image Anal; 2021 Apr; 69():101958. PubMed ID: 33550009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pancreas Segmentation in Abdominal CT Scans using Inter-/Intra-Slice Contextual Information with a Cascade Neural Network.
    Yang Z; Zhang L; Zhang M; Feng J; Wu Z; Ren F; Lv Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5937-5940. PubMed ID: 31947200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic liver segmentation by integrating fully convolutional networks into active contour models.
    Guo X; Schwartz LH; Zhao B
    Med Phys; 2019 Oct; 46(10):4455-4469. PubMed ID: 31356688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactive 3D U-net for the segmentation of the pancreas in computed tomography scans.
    Boers TGW; Hu Y; Gibson E; Barratt DC; Bonmati E; Krdzalic J; van der Heijden F; Hermans JJ; Huisman HJ
    Phys Med Biol; 2020 Mar; 65(6):065002. PubMed ID: 31978921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.