These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34951788)

  • 1. Optofluidic Resonance of a Transparent Liquid Jet Excited by a Continuous Wave Laser.
    Liu H; Wang Z; Gao L; Huang Y; Tang H; Zhao X; Deng W
    Phys Rev Lett; 2021 Dec; 127(24):244502. PubMed ID: 34951788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-destabilizing mechanism of a laminar inviscid liquid jet issuing from a circular nozzle.
    Umemura A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046307. PubMed ID: 21599295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-valued breakup length of a water jet issuing from a finite-length nozzle under normal gravity.
    Umemura A; Kawanabe S; Suzuki S; Osaka J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036309. PubMed ID: 22060494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets.
    Castillo-Orozco E; Davanlou A; Choudhury PK; Kumar R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053022. PubMed ID: 26651794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental evidence of a Rayleigh-plateau instability in free falling granular jets.
    Prado G; Amarouchene Y; Kellay H
    Phys Rev Lett; 2011 May; 106(19):198001. PubMed ID: 21668202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Instability evolution of the viscous elliptic liquid jet in the Rayleigh regime.
    Gu S; Wang L; Hung DLS
    Phys Rev E; 2017 Jun; 95(6-1):063112. PubMed ID: 28709223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-induced deformation and instability of a liquid interface. I. Statics.
    Wunenburger R; Casner A; Delville JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036314. PubMed ID: 16605658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid jet response to internal modulated ultrasonic radiation pressure and stimulated drop production.
    Lonzaga JB; Osterhoudt CF; Thiessen DB; Marston PL
    J Acoust Soc Am; 2007 Jun; 121(6):3323-30. PubMed ID: 17552684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High sensitivity UV fluorescence spectroscopy based on an optofluidic jet waveguide.
    Persichetti G; Testa G; Bernini R
    Opt Express; 2013 Oct; 21(20):24219-30. PubMed ID: 24104332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periodic jetting and monodisperse jet drops from oblique gas injection.
    McRae O; Gaillard A; Bird JC
    Phys Rev E; 2017 Jul; 96(1-1):013112. PubMed ID: 29347174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive experimental dataset on large-amplitude Rayleigh-Plateau instability in continuous InkJet printing regime.
    Maîtrejean G; Cousin M; Truong F; Verdoot V; Hugenell F; Roux DCD
    Data Brief; 2024 Feb; 52():109941. PubMed ID: 38260863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optofluidic jet waveguide for laser-induced fluorescence spectroscopy.
    Persichetti G; Testa G; Bernini R
    Opt Lett; 2012 Dec; 37(24):5115-7. PubMed ID: 23258023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear Evolution and Breakup of the Cavitating Liquid Jet Surrounded by the Rotary Compressible Air.
    Liu SX; Lü M
    ACS Omega; 2019 Dec; 4(26):21732-21740. PubMed ID: 31891052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absolute instability of a liquid jet in a coflowing stream.
    Utada AS; Fernandez-Nieves A; Gordillo JM; Weitz DA
    Phys Rev Lett; 2008 Jan; 100(1):014502. PubMed ID: 18232775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel method of drug delivery for fibrinolysis with Ho:YAG laser-induced liquid jet.
    Hirano T; Komatsu M; Uenohara H; Takahashi A; Takayama K; Yoshimoto T
    Lasers Med Sci; 2002; 17(3):165-72. PubMed ID: 12181631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Nanoparticle Surfactants on the Breakup of Free-Falling Water Jets during Continuous Processing of Reconfigurable Structured Liquid Droplets.
    Toor A; Helms BA; Russell TP
    Nano Lett; 2017 May; 17(5):3119-3125. PubMed ID: 28358213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluctuations in Rayleigh breakup induced by particulates.
    Clarke A; Rieubland S
    Adv Colloid Interface Sci; 2010 Dec; 161(1-2):15-21. PubMed ID: 19846049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The acquisition and measurement of surface waves of high-speed liquid jets.
    Gong C; Yang M; Kang C; Wang Y
    J Vis (Tokyo); 2016; 19():211-224. PubMed ID: 27110212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward jet injection by continuous-wave laser cavitation.
    Berrospe-Rodriguez C; Visser CW; Schlautmann S; Rivas DF; Ramos-Garcia R
    J Biomed Opt; 2017 Oct; 22(10):1-9. PubMed ID: 29030942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Receding Dynamics of Droplet Deposition on a Smooth Surface from a Central Jet to Secondary Droplet Emission.
    Liu Z; Pan X; Ma Q; Fang H
    Langmuir; 2020 Dec; 36(49):15082-15093. PubMed ID: 33264015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.