These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34951853)

  • 1. Convolution Neural Networks Using Deep Matrix Factorization for Predicting Circrna-Disease Association.
    Liu ZH; Ji CM; Ni JC; Wang YT; Qiao LJ; Zheng CH
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):277-284. PubMed ID: 34951853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network.
    Cao R; He C; Wei P; Su Y; Xia J; Zheng C
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iCircDA-MF: identification of circRNA-disease associations based on matrix factorization.
    Wei H; Liu B
    Brief Bioinform; 2020 Jul; 21(4):1356-1367. PubMed ID: 31197324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNMFLP: Predicting circRNA-disease associations based on robust nonnegative matrix factorization and label propagation.
    Peng L; Yang C; Huang L; Chen X; Fu X; Liu W
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35534179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DCDA: CircRNA-Disease Association Prediction with Feed-Forward Neural Network and Deep Autoencoder.
    Turgut H; Turanli B; Boz B
    Interdiscip Sci; 2024 Mar; 16(1):91-103. PubMed ID: 37978116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Matrix Factorization Improves Prediction of Human CircRNA-Disease Associations.
    Lu C; Zeng M; Zhang F; Wu FX; Li M; Wang J
    IEEE J Biomed Health Inform; 2021 Mar; 25(3):891-899. PubMed ID: 32750925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting CircRNA disease associations using novel node classification and link prediction models on Graph Convolutional Networks.
    Bamunu Mudiyanselage T; Lei X; Senanayake N; Zhang Y; Pan Y
    Methods; 2022 Feb; 198():32-44. PubMed ID: 34748953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting CircRNA-Disease Associations via Feature Convolution Learning With Heterogeneous Graph Attention Network.
    Peng L; Yang C; Chen Y; Liu W
    IEEE J Biomed Health Inform; 2023 Jun; 27(6):3072-3082. PubMed ID: 37030839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm.
    Wang L; You ZH; Li YM; Zheng K; Huang YA
    PLoS Comput Biol; 2020 May; 16(5):e1007568. PubMed ID: 32433655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential circRNA-Disease Association Prediction Using DeepWalk and Nonnegative Matrix Factorization.
    Qiao LJ; Gao Z; Ji CM; Liu ZH; Zheng CH; Wang YT
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):3154-3162. PubMed ID: 37018084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepWalk-aware graph attention networks with CNN for circRNA-drug sensitivity association identification.
    Li G; Li Y; Liang C; Luo J
    Brief Funct Genomics; 2024 Jul; 23(4):418-428. PubMed ID: 38061910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collaborative deep learning improves disease-related circRNA prediction based on multi-source functional information.
    Wang Y; Liu X; Shen Y; Song X; Wang T; Shang X; Peng J
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36847701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MNMDCDA: prediction of circRNA-disease associations by learning mixed neighborhood information from multiple distances.
    Li Y; Hu XG; Wang L; Li PP; You ZH
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36384071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the potential associations between circRNA and drug sensitivity using a multisource feature-based approach.
    Yin S; Xu P; Jiang Y; Yang X; Lin Y; Zheng M; Hu J; Zhao Q
    J Cell Mol Med; 2024 Oct; 28(19):e18591. PubMed ID: 39347936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iCDA-CMG: identifying circRNA-disease associations by federating multi-similarity fusion and collective matrix completion.
    Xiao Q; Zhong J; Tang X; Luo J
    Mol Genet Genomics; 2021 Jan; 296(1):223-233. PubMed ID: 33159254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GMNN2CD: identification of circRNA-disease associations based on variational inference and graph Markov neural networks.
    Niu M; Zou Q; Wang C
    Bioinformatics; 2022 Apr; 38(8):2246-2253. PubMed ID: 35157027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Matrix factorization with neural network for predicting circRNA-RBP interactions.
    Wang Z; Lei X
    BMC Bioinformatics; 2020 Jun; 21(1):229. PubMed ID: 32503474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of circRNA-MiRNA Association Using Singular Value Decomposition and Graph Neural Networks.
    Qian Y; Zheng J; Jiang Y; Li S; Deng L
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3461-3468. PubMed ID: 36395130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RDGAN: Prediction of circRNA-Disease Associations via Resistance Distance and Graph Attention Network.
    Lu P; Wang Y
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(5):1445-1457. PubMed ID: 38787672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring potential circRNA biomarkers for cancers based on double-line heterogeneous graph representation learning.
    Zhang Y; Wang Z; Wei H; Chen M
    BMC Med Inform Decis Mak; 2024 Jun; 24(1):159. PubMed ID: 38844961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.