These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34951878)

  • 1. Suppression of gap plasmon resonance for high-responsivity metal-insulator-metal near-infrared hot-electron photodetectors.
    Hu X; Li F; Wu H; Liu W
    Opt Lett; 2022 Jan; 47(1):42-45. PubMed ID: 34951878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonant Grating-Enhanced Black Phosphorus Mid-Wave Infrared Photodetector.
    Lien MR; Wang N; Wu J; Soibel A; Gunapala SD; Wang H; Povinelli ML
    Nano Lett; 2022 Nov; 22(21):8704-8710. PubMed ID: 36287194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong and highly asymmetrical optical absorption in conformal metal-semiconductor-metal grating system for plasmonic hot-electron photodetection application.
    Wu K; Zhan Y; Zhang C; Wu S; Li X
    Sci Rep; 2015 Sep; 5():14304. PubMed ID: 26387836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device.
    Sobhani A; Knight MW; Wang Y; Zheng B; King NS; Brown LV; Fang Z; Nordlander P; Halas NJ
    Nat Commun; 2013; 4():1643. PubMed ID: 23535664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonically enhanced metal-insulator multistacked photodetectors with separate absorption and collection junctions for near-infrared applications.
    Abedini Dereshgi S; Sisman Z; Topalli K; Okyay AK
    Sci Rep; 2017 Feb; 7():42349. PubMed ID: 28181590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing Hot-Electron Photodetection of a TiO
    Wang W; Zhang C; Qiu K; Li G; Zhai A; Hao Y; Li X; Cui Y
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable infrared hot-electron photodetection by exciting gap-mode plasmons with wafer-scale gold nanohole arrays.
    Ding H; Wu S; Zhang C; Li L; Sun Q; Zhou L; Li X
    Opt Express; 2020 Mar; 28(5):6511-6520. PubMed ID: 32225897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene photodetectors with ultra-broadband and high responsivity at room temperature.
    Liu CH; Chang YC; Norris TB; Zhong Z
    Nat Nanotechnol; 2014 Apr; 9(4):273-8. PubMed ID: 24633521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene on metal-insulator-metal-based plasmonic metamaterials at infrared wavelengths.
    Ogawa S; Shimatani M; Fukushima S; Okuda S; Matsumoto K
    Opt Express; 2018 Mar; 26(5):5665-5674. PubMed ID: 29529768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Germanium-Tin (GeSn) Metal-Semiconductor-Metal (MSM) Near-Infrared Photodetectors.
    Chuang RW; Huang YH; Tsai TH
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Five-layer planar hot-electron photodetectors at telecommunication wavelength of 1550 nm.
    Shao W; Hu J; Wang Y
    Opt Express; 2022 Jul; 30(14):25555-25566. PubMed ID: 36237083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-Infrared Photodetectors Based on MoTe
    Yu W; Li S; Zhang Y; Ma W; Sun T; Yuan J; Fu K; Bao Q
    Small; 2017 Jun; 13(24):. PubMed ID: 28398007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GeSn resonant-cavity-enhanced photodetectors on silicon-on-insulator platforms.
    Huang BJ; Lin JH; Cheng HH; Chang GE
    Opt Lett; 2018 Mar; 43(6):1215-1218. PubMed ID: 29543254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultranarrow-bandwidth planar hot electron photodetector based on coupled dual Tamm plasmons.
    Liang W; Xiao Z; Xu H; Deng H; Li H; Chen W; Liu Z; Long Y
    Opt Express; 2020 Oct; 28(21):31330-31344. PubMed ID: 33115108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase change material based hot electron photodetection.
    Chamoli SK; Verma G; Singh SC; Guo C
    Nanoscale; 2021 Jan; 13(2):1311-1317. PubMed ID: 33410442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hot Electron-Based Near-Infrared Photodetection Using Bilayer MoS2.
    Wang W; Klots A; Prasai D; Yang Y; Bolotin KI; Valentine J
    Nano Lett; 2015 Nov; 15(11):7440-4. PubMed ID: 26426510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarization-insensitive hot-electron infrared photodetection by double Schottky junction and multilayer grating.
    Zhang Q; Zhang C; Qin L; Li X
    Opt Lett; 2018 Jul; 43(14):3325-3328. PubMed ID: 30004497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-absorption grating-insulator-metal structures.
    Chen X; He D; Wu J
    Appl Opt; 2021 Aug; 60(24):7480-7484. PubMed ID: 34613037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface plasmon enhanced GeSn photodetectors operating at 2 µm.
    Zhou H; Zhang L; Tong J; Wu S; Son B; Chen Q; Zhang DH; Tan CS
    Opt Express; 2021 Mar; 29(6):8498-8509. PubMed ID: 33820296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonant-cavity-enhanced responsivity in germanium-on-insulator photodetectors.
    Ghosh S; Lin KC; Tsai CH; Lee KH; Chen Q; Son B; Mukhopadhyay B; Tan CS; Chang GE
    Opt Express; 2020 Aug; 28(16):23739-23747. PubMed ID: 32752366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.