BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

570 related articles for article (PubMed ID: 34952340)

  • 61. Photoplethysmograph signal reconstruction based on a novel motion artifact detection-reduction approach. Part II: Motion and noise artifact removal.
    Salehizadeh SM; Dao DK; Chong JW; McManus D; Darling C; Mendelson Y; Chon KH
    Ann Biomed Eng; 2014 Nov; 42(11):2251-63. PubMed ID: 24823655
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A Photoplethysmographic Signal Isolated From an Additive Motion Artifact by Frequency Translation.
    Sinchai S; Kainan P; Wardkein P; Koseeyaporn J
    IEEE Trans Biomed Circuits Syst; 2018 Aug; 12(4):904-917. PubMed ID: 29994775
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Blood pressure estimation and classification using a reference signal-less photoplethysmography signal: a deep learning framework.
    Pankaj ; Kumar A; Komaragiri R; Kumar M
    Phys Eng Sci Med; 2023 Dec; 46(4):1589-1605. PubMed ID: 37747644
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A supervised machine learning semantic segmentation approach for detecting artifacts in plethysmography signals from wearables.
    Guo Z; Ding C; Hu X; Rudin C
    Physiol Meas; 2021 Dec; 42(12):. PubMed ID: 34794126
    [No Abstract]   [Full Text] [Related]  

  • 65. A Novel Signal Restoration Method of Noisy Photoplethysmograms for Uninterrupted Health Monitoring.
    Vraka A; Zangróniz R; Quesada A; Hornero F; Alcaraz R; Rieta JJ
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203003
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Detection of motion artifact patterns in photoplethysmographic signals based on time and period domain analysis.
    Couceiro R; Carvalho P; Paiva RP; Henriques J; Muehlsteff J
    Physiol Meas; 2014 Dec; 35(12):2369-88. PubMed ID: 25390186
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Wrist Photoplethysmography Signal Quality Assessment for Reliable Heart Rate Estimate and Morphological Analysis.
    Moscato S; Giudice SL; Massaro G; Chiari L
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957395
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Rapid Vital Sign Extraction for Real-Time Opto-Physiological Monitoring at Varying Physical Activity Intensity Levels.
    Zheng X; Dwyer VM; Barrett LA; Derakhshani M; Hu S
    IEEE J Biomed Health Inform; 2023 Jul; 27(7):3107-3118. PubMed ID: 37071520
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Interface sensors with skin piezo-thermic transduction enable motion artifact removal for wearable physiological monitoring.
    Wang L; Liu S; Li G; Zhu R
    Biosens Bioelectron; 2021 Sep; 188():113325. PubMed ID: 34030098
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Robust PPG motion artifact detection using a 1-D convolution neural network.
    Goh CH; Tan LK; Lovell NH; Ng SC; Tan MP; Lim E
    Comput Methods Programs Biomed; 2020 Nov; 196():105596. PubMed ID: 32580054
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Learning to estimate heart rate from accelerometer and user's demographics during physical exercises.
    Pacheco AGC; Cabello FAC; Rodrigues PG; Miraldo DC; Fioravanti VBO; Lima RG; Pinto PR; Fonoff AMO; Penatti OAB
    IEEE J Biomed Health Inform; 2023 Mar; PP():. PubMed ID: 37028018
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Novel heart rate variability index for wrist-worn wearable devices subject to motion artifacts that complicate measurement of the continuous pulse interval.
    Baek HJ; Cho J
    Physiol Meas; 2019 Nov; 40(10):105010. PubMed ID: 31593935
    [TBL] [Abstract][Full Text] [Related]  

  • 73. BioTranslator: Inferring R-Peaks from Ambulatory Wrist-Worn PPG Signal.
    Everson L; Biswas D; Verhoef BE; Kim CH; Van Hoof C; Konijnenburg M; Van Helleputte N
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4241-4245. PubMed ID: 31946805
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Design of a Realtime Photoplethysmogram Signal Quality Checker for Wearables and Edge Computing.
    Banerjee T; Gavas RD; Bs M; Karmakar S; Ramakrishnan RK; Pal A
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1323-1326. PubMed ID: 36086651
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals.
    Zhang Q; Zhou D; Zeng X
    Biomed Eng Online; 2017 Feb; 16(1):23. PubMed ID: 28166774
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Heart rate extraction algorithm based on adaptive heart rate search model].
    Meng R; Li Z; Yu H; Niu Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Jun; 39(3):516-526. PubMed ID: 35788521
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Photoplethysmography-Based Heart Rate Monitoring in Physical Activities via Joint Sparse Spectrum Reconstruction.
    Zhang Z
    IEEE Trans Biomed Eng; 2015 Aug; 62(8):1902-10. PubMed ID: 26186747
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A motion-tolerant approach for monitoring SpO
    Fan F; Yan Y; Tang Y; Zhang H
    Comput Biol Med; 2017 Dec; 91():291-305. PubMed ID: 29102826
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A new particle filter algorithm filtering motion artifact noise for clean electrocardiogram signals in wearable health monitoring system.
    Ma M; Du M; Feng Q; Xiahou S
    Rev Sci Instrum; 2024 Jan; 95(1):. PubMed ID: 38197770
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Breathing Rate Estimation from Head-Worn Photoplethysmography Sensor Data Using Machine Learning.
    Stankoski S; Kiprijanovska I; Mavridou I; Nduka C; Gjoreski H; Gjoreski M
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.