These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34952388)

  • 1. Fluorescence quenching by competitive absorption between solid foods: Rapid and non-destructive determination of maize flour adulterated in turmeric powder.
    Xie JY; Tan J; Tang SH; Wang Y
    Food Chem; 2022 May; 375():131887. PubMed ID: 34952388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid, simultaneous and non-destructive determination of multiple adulterants in Panax notoginseng powder by front-face total synchronous fluorescence spectroscopy.
    Liu ZX; Tang SH; Wang Y; Tan J; Jiang ZT
    Fitoterapia; 2023 Apr; 166():105469. PubMed ID: 36907229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A practical application of front-face synchronous fluorescence spectroscopy to rapid, simultaneous and non-destructive determination of piperine and multiple adulterants in ground black and white pepper (Piper nigrum L.).
    Liu ZX; Xiong SR; Tang SH; Wang Y; Tan J
    Food Res Int; 2023 May; 167():112654. PubMed ID: 37087244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Front-face synchronous fluorescence spectroscopy: a rapid and non-destructive authentication method for Arabica coffee adulterated with maize and soybean flours.
    Xie JY; Tan J
    J Verbrauch Lebensm; 2022; 17(3):209-219. PubMed ID: 35996456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Front-face synchronous fluorescence spectroscopy for rapid and non-destructive determination of free capsanthin, the predominant carotenoid in chili (Capsicum annuum L.) powders based on aggregation-induced emission.
    Tan J; Li MF; Li R; Jiang ZT; Tang SH; Wang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jul; 255():119696. PubMed ID: 33774412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of maize flour adulteration in chickpea flour (
    Bala M; Sethi S; Sharma S; Mridula D; Kaur G
    J Food Sci Technol; 2022 Aug; 59(8):3130-3138. PubMed ID: 35505664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid spectroscopic method for quantifying gluten concentration as a potential biomarker to test adulteration of green banana flour.
    Ndlovu PF; Magwaza LS; Tesfay SZ; Mphahlele RR
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec; 262():120081. PubMed ID: 34175755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining Fourier Transform Mid-Infrared Spectroscopy with Chemometric Methods to Detect Adulterations in Milk Powder.
    Feng L; Zhu S; Chen S; Bao Y; He Y
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31277225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-infrared reflectance spectroscopy as a rapid and non-destructive analysis tool for curcuminoids in turmeric.
    Kim YJ; Lee HJ; Shin HS; Shin Y
    Phytochem Anal; 2014; 25(5):445-52. PubMed ID: 24692181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An evaluation of IR spectroscopy for authentication of adulterated turmeric powder using pattern recognition.
    Khodabakhshian R; Bayati MR; Emadi B
    Food Chem; 2021 Dec; 364():130406. PubMed ID: 34174644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FT-NIR spectroscopy coupled with multivariate analysis for detection of starch adulteration in turmeric powder.
    Kar S; Tudu B; Jana A; Bandyopadhyay R
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2019 Jun; 36(6):863-875. PubMed ID: 31034329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies for the content determination of capsaicin and the identification of adulterated pepper powder using a hand-held near-infrared spectrometer.
    Wu S; Wang L; Zhou G; Liu C; Ji Z; Li Z; Li W
    Food Res Int; 2023 Jan; 163():112192. PubMed ID: 36596130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-destructive Raman spectroscopy as a tool for measuring ASTA color values and Sudan I content in paprika powder.
    Monago-Maraña O; Eskildsen CE; Afseth NK; Galeano-Díaz T; Muñoz de la Peña A; Wold JP
    Food Chem; 2019 Feb; 274():187-193. PubMed ID: 30372925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of Additives and Chemical Contaminants in Turmeric Powder Using FT-IR Spectroscopy.
    Dhakal S; Schmidt WF; Kim M; Tang X; Peng Y; Chao K
    Foods; 2019 Apr; 8(5):. PubMed ID: 31027345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of hardness for maize kernels based on hyperspectral imaging.
    Qiao M; Xu Y; Xia G; Su Y; Lu B; Gao X; Fan H
    Food Chem; 2022 Jan; 366():130559. PubMed ID: 34289440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronous front-face fluorescence spectroscopy for authentication of the adulteration of edible vegetable oil with refined used frying oil.
    Tan J; Li R; Jiang ZT; Tang SH; Wang Y; Shi M; Xiao YQ; Jia B; Lu TX; Wang H
    Food Chem; 2017 Feb; 217():274-280. PubMed ID: 27664635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying Turmeric Powder by Source and Metanil Yellow Adulteration Levels Using Near-Infrared Spectra and PCA-SIMCA Modeling.
    Rukundo IR; Danao MC
    J Food Prot; 2020 Jun; 83(6):968-974. PubMed ID: 32034409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid detection and quantification of adulteration in Chinese hawthorn fruits powder by near-infrared spectroscopy combined with chemometrics.
    Sun X; Li H; Yi Y; Hua H; Guan Y; Chen C
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Apr; 250():119346. PubMed ID: 33387806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitation of curcuminoids in curcuma rhizome by near-infrared spectroscopic analysis.
    Tanaka K; Kuba Y; Sasaki T; Hiwatashi F; Komatsu K
    J Agric Food Chem; 2008 Oct; 56(19):8787-92. PubMed ID: 18767866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multivariate method for prediction of fumonisins B1 and B2 and zearalenone in Brazilian maize using Near Infrared Spectroscopy (NIR).
    Tyska D; Mallmann AO; Vidal JK; Almeida CAA; Gressler LT; Mallmann CA
    PLoS One; 2021; 16(1):e0244957. PubMed ID: 33412558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.