BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34952400)

  • 1. Temperature influence on the NAPL-water interfacial area between 10 °C and 60 °C for trichloroethylene.
    Koproch N; Dahmke A; Schwardt A; Köber R
    J Contam Hydrol; 2022 Feb; 245():103932. PubMed ID: 34952400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ stabilization of NAPL contaminant source-zones as a remediation technique to reduce mass discharge and flux to groundwater.
    Mateas DJ; Tick GR; Carroll KC
    J Contam Hydrol; 2017 Sep; 204():40-56. PubMed ID: 28780996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The aqueous solubility of common organic groundwater contaminants as a function of temperature between 5 and 70 °C.
    Koproch N; Dahmke A; Köber R
    Chemosphere; 2019 Feb; 217():166-175. PubMed ID: 30415115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical structure influence on NAPL mixture nonideality evolution, rate-limited dissolution, and contaminant mass flux.
    Padgett MC; Tick GR; Carroll KC; Burke WR
    J Contam Hydrol; 2017 Mar; 198():11-23. PubMed ID: 28202180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density-modified displacement for dense nonaqueous-phase liquid source-zone remediation: density conversion using a partitioning alcohol.
    Ramsburg CA; Pennell KD
    Environ Sci Technol; 2002 May; 36(9):2082-7. PubMed ID: 12026997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1,4-Dioxane cosolvency impacts on trichloroethene dissolution and sorption.
    Milavec J; Tick GR; Brusseau ML; Carroll KC
    Environ Pollut; 2019 Sep; 252(Pt A):777-783. PubMed ID: 31200203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of NAPL-water interfacial areas and mass transfer rates in two-dimensional flow cell.
    Li M; Zhai Y; Wan L
    Water Sci Technol; 2016 Nov; 74(9):2145-2151. PubMed ID: 27842034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measured mass transfer coefficients in porous media using specific interfacial area.
    Cho J; Annable MD; Rao PS
    Environ Sci Technol; 2005 Oct; 39(20):7883-8. PubMed ID: 16295851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of Nonaqueous-Phase Liquids to the Retention and Transport of Per and Polyfluoroalkyl Substances (PFAS) in Porous Media.
    Van Glubt S; Brusseau ML
    Environ Sci Technol; 2021 Mar; 55(6):3706-3715. PubMed ID: 33666425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical modelling of the impact of surfactant partitioning on surfactant-enhanced aquifer remediation.
    Babaei M; Copty NK
    J Contam Hydrol; 2019 Feb; 221():69-81. PubMed ID: 30691860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hot water flushing for immiscible displacement of a viscous NAPL.
    O'Carroll DM; Sleep BE
    J Contam Hydrol; 2007 May; 91(3-4):247-66. PubMed ID: 17207892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced removal of NAPL constituent from aquifer during surfactant flushing with aqueous hydraulic barriers of high viscosity.
    Ahn D; Choi JK; Kim H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jun; 52(7):590-597. PubMed ID: 28281884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding of Co-boiling between Organic Contaminants and Water during Thermal Remediation: Effects of Nonequilibrium Heat and Mass Transport.
    Xu XY; Hu N; Qian ZK; Wang Q; Fan LW; Song X
    Environ Sci Technol; 2023 Oct; 57(42):16043-16052. PubMed ID: 37819732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced removal of VOCs from aquifers during air sparging using thickeners and surfactants: Bench-scale experiments.
    Kim H; Ahn D; Annable MD
    J Contam Hydrol; 2016 Jan; 184():25-34. PubMed ID: 26697745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobilization and micellar solubilization of NAPL contaminants in aquifer rocks.
    Javanbakht G; Goual L
    J Contam Hydrol; 2016; 185-186():61-73. PubMed ID: 26826983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The complex spatial distribution of trichloroethene and the probability of NAPL occurrence in the rock matrix of a mudstone aquifer.
    Shapiro AM; Goode DJ; Imbrigiotta TE; Lorah MM; Tiedeman CR
    J Contam Hydrol; 2019 Jun; 223():103478. PubMed ID: 31003861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a NAPL-contaminated site using the partitioning behavior of noble gases.
    Cho I; Ju Y; Lee SS; Kaown D; Lee KK
    J Contam Hydrol; 2020 Nov; 235():103733. PubMed ID: 33113508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Push-pull partitioning tracer tests using radon-222 to quantify non-aqueous phase liquid contamination.
    Davis BM; Istok JD; Semprini L
    J Contam Hydrol; 2002 Sep; 58(1-2):129-46. PubMed ID: 12236552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A functional relation for field-scale nonaqueous phase liquid dissolution developed using a pore network model.
    Dillard LA; Essaid HI; Blunt MJ
    J Contam Hydrol; 2001 Mar; 48(1-2):89-119. PubMed ID: 11291483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sherwood correlation for dissolution of pooled NAPL in porous media.
    Aydin Sarikurt D; Gokdemir C; Copty NK
    J Contam Hydrol; 2017 Nov; 206():67-74. PubMed ID: 29033219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.