BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 34952597)

  • 1. Establishment and validation of in-house cryopreserved CAR/TCR-T cell flow cytometry quality control.
    Cai Y; Prochazkova M; Jiang C; Song HW; Jin J; Moses L; Gkitsas N; Somerville RP; Highfill SL; Panch S; Stroncek DF; Jin P
    J Transl Med; 2021 Dec; 19(1):523. PubMed ID: 34952597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of in vitro potency assays by a resting step for clinical-grade chimeric antigen receptor engineered T cells.
    Wang L; Gong W; Wang S; Neuber B; Sellner L; Schubert ML; Hückelhoven-Krauss A; Kunz A; Gern U; Michels B; Hinkelbein M; Mechler S; Richter P; Müller-Tidow C; Schmitt M; Schmitt A
    Cytotherapy; 2019 May; 21(5):566-578. PubMed ID: 30910382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing lisocabtagene maraleucel chimeric antigen receptor T-cell manufacturing for improved process, product quality and consistency across CD19
    Teoh J; Brown LF
    Cytotherapy; 2022 Sep; 24(9):962-973. PubMed ID: 35610089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of droplet digital PCR for the detection of vector copy number in clinical CAR/TCR T cell products.
    Lu A; Liu H; Shi R; Cai Y; Ma J; Shao L; Rong V; Gkitsas N; Lei H; Highfill SL; Panch S; Stroncek DF; Jin P
    J Transl Med; 2020 May; 18(1):191. PubMed ID: 32384903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manufacturing chimeric antigen receptor T cells from cryopreserved peripheral blood cells: time for a collect-and-freeze model?
    Palen K; Zurko J; Johnson BD; Hari P; Shah NN
    Cytotherapy; 2021 Nov; 23(11):985-990. PubMed ID: 34538575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autologous cryopreserved leukapheresis cellular material for chimeric antigen receptor-T cell manufacture.
    Tyagarajan S; Schmitt D; Acker C; Rutjens E
    Cytotherapy; 2019 Dec; 21(12):1198-1205. PubMed ID: 31837735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of a flow cytometry-based method to quantify viable lymphocyte subtypes in fresh and cryopreserved hematopoietic cellular products.
    Mfarrej B; Gaude J; Couquiaud J; Calmels B; Chabannon C; Lemarie C
    Cytotherapy; 2021 Jan; 23(1):77-87. PubMed ID: 32718876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The clinical outcomes of fresh versus cryopreserved CD19-directed chimeric antigen receptor T cells in non-Hodgkin lymphoma patients.
    Su T; Ying Z; Lu XA; He T; Song Y; Wang X; Ping L; Xie Y; Tu M; Liu G; Qi F; Ding Y; Jing H; Zhu J
    Cryobiology; 2020 Oct; 96():106-113. PubMed ID: 32721392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization and validation of in vivo flow cytometry chimeric antigen receptor T cell detection method using CD19his indirect staining.
    Zaninelli S; Meli C; Borleri G; Quaroni M; Pavoni C; Gaipa G; Biondi A; Introna M; Golay J; Rambaldi A; Rambaldi B
    Cytometry A; 2024 Feb; 105(2):112-123. PubMed ID: 37707318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of cryopreservation techniques in manufacturing, transport, and storage of Car-T therapy products.
    Jandova M; Stacey GN; Lanska M; Gregor I; Rozsivalova P; Bekova L; Duchacova ZW; Belada D; Radocha J; Mericka P; Fuller B
    Cryo Letters; 2023; 44(3):123-133. PubMed ID: 37883165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advantages of high cell concentration prior to cryopreservation of initial leukapheresis in CAR-T cell therapy.
    Carbonell D; Monsalvo S; Catalá E; Pérez-Corral A; Villegas C; Falero C; Ruano G; Martinez M; Kwon M; Muñoz-Martínez C; Díez-Martín JL; Gayoso J; Anguita J
    Blood Transfus; 2024 May; 22(3):239-245. PubMed ID: 38063787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishment of a New Cryopreservation Solution for Chimeric Antigen Receptor T Cells.
    Tang Q; Gu L; Zhou B; Shi J; Wu H; Zhu H; Xu Y; Zhang T
    Biopreserv Biobank; 2022 Dec; 20(6):567-574. PubMed ID: 35294840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of cryopreserved chimeric antigen receptor T cells for the locoreogional delivery to the neural axis.
    Akel S; Poston L; Park JJ; Schoultz SB; Alloush L; Zheng F; Zhou S; Lockey T; Willis C; DeRenzo C; Gottschalk S
    Cytotherapy; 2023 Nov; 25(11):1149-1154. PubMed ID: 37676217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of cryopreservation on chimeric antigen receptor T cell functions.
    Xu H; Cao W; Huang L; Xiao M; Cao Y; Zhao L; Wang N; Zhou J
    Cryobiology; 2018 Aug; 83():40-47. PubMed ID: 29908946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Streamlined measurement of chimeric antigen receptor T-cell concentration, size, viability and two-color phenotyping during manufacturing.
    Pajarillo R; Paruzzo L; Carturan A; Ugwuanyi O; White G; Guruprasad P; Ballard HJ; Patel RP; Zhang Y; Lee YG; Hong SJA; Dittami GM; Ruella M
    Cytotherapy; 2024 May; 26(5):506-511. PubMed ID: 38483365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Cryopreservation on Autologous Chimeric Antigen Receptor T Cell Characteristics.
    Panch SR; Srivastava SK; Elavia N; McManus A; Liu S; Jin P; Highfill SL; Li X; Dagur P; Kochenderfer JN; Fry TJ; Mackall CL; Lee D; Shah NN; Stroncek DF
    Mol Ther; 2019 Jul; 27(7):1275-1285. PubMed ID: 31178392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced Flow Cytometry Assays for Immune Monitoring of CAR-T Cell Applications.
    Blache U; Weiss R; Boldt A; Kapinsky M; Blaudszun AR; Quaiser A; Pohl A; Miloud T; Burgaud M; Vucinic V; Platzbecker U; Sack U; Fricke S; Koehl U
    Front Immunol; 2021; 12():658314. PubMed ID: 34012442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity and Specificity of CD19.CAR-T Cell Detection by Flow Cytometry and PCR.
    Schanda N; Sauer T; Kunz A; Hückelhoven-Krauss A; Neuber B; Wang L; Hinkelbein M; Sedloev D; He B; Schubert ML; Müller-Tidow C; Schmitt M; Schmitt A
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manufacturing of gene-modified cytotoxic T lymphocytes for autologous cellular therapy for lymphoma.
    Cooper LJ; Ausubel L; Gutierrez M; Stephan S; Shakeley R; Olivares S; Serrano LM; Burton L; Jensen MC; Forman SJ; DiGiusto DL
    Cytotherapy; 2006; 8(2):105-17. PubMed ID: 16698684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High efficiency closed-system gene transfer using automated spinoculation.
    Remley VA; Jin J; Sarkar S; Moses L; Prochazkova M; Cai Y; Shao L; Liu H; Fuksenko T; Jin P; Stroncek DF; Highfill SL
    J Transl Med; 2021 Nov; 19(1):474. PubMed ID: 34819105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.