BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34952902)

  • 1. In-situ detoxification of schedule-I chemical warfare agents utilizing Zr(OH)
    Imran M; Singh VV; Garg P; Mazumder A; Pandey LK; Sharma PK; Acharya J; Ganesan K
    Sci Rep; 2021 Dec; 11(1):24421. PubMed ID: 34952902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-Function Detoxifying Nanofabrics against Nerve Agent and Blistering Agent Simulants.
    Wu T; Qiu F; Xu R; Zhao Q; Guo L; Chen D; Li C; Jiao X
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1265-1275. PubMed ID: 36594244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental Effects on Zirconium Hydroxide Nanoparticles and Chemical Warfare Agent Decomposition: Implications of Atmospheric Water and Carbon Dioxide.
    Balow RB; Lundin JG; Daniels GC; Gordon WO; McEntee M; Peterson GW; Wynne JH; Pehrsson PE
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39747-39757. PubMed ID: 29053242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrathin Zirconium Hydroxide Nanosheet-Assembled Nanofibrous Membranes for Rapid Degradation of Chemical Warfare Agents.
    Liao Y; Chen W; Li S; Jiao W; Si Y; Yu J; Ding B
    Small; 2021 Aug; 17(33):e2101639. PubMed ID: 34258857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-Fast Degradation of Chemical Warfare Agents Using MOF-Nanofiber Kebabs.
    Zhao J; Lee DT; Yaga RW; Hall MG; Barton HF; Woodward IR; Oldham CJ; Walls HJ; Peterson GW; Parsons GN
    Angew Chem Int Ed Engl; 2016 Oct; 55(42):13224-13228. PubMed ID: 27653957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of fluoride from water using activated carbon fibres modified with zirconium by a drop-coating method.
    Pang T; Aye Chan TS; Jande YAC; Shen J
    Chemosphere; 2020 Sep; 255():126950. PubMed ID: 32380266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-purpose high-efficiency air filter paper loaded with reactive zirconium hydroxide for the filtration aerosols and degradation of chemical warfare agents.
    Huang X; Zhao T; Zhang H; Yan C; Sha J; Tang H; Zhu H; Wu Y
    RSC Adv; 2021 Oct; 11(56):35245-35257. PubMed ID: 35493143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zr(OH)
    Jang S; Ka D; Jung H; Kim MK; Jung H; Jin Y
    Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32630315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoflake-Engineered Zirconic Fibrous Aerogels with Parallel-Arrayed Conduits for Fast Nerve Agent Degradation.
    Liao Y; Yang F; Si Y; Yu J; Ding B
    Nano Lett; 2021 Oct; 21(20):8839-8847. PubMed ID: 34617763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of breakthrough volumes of volatile chemical warfare agents on a poly(2,6-diphenylphenylene oxide)-based adsorbent and application to thermal desorption-gas chromatography/mass spectrometric analysis.
    Kanamori-Kataoka M; Seto Y
    J Chromatogr A; 2015 Sep; 1410():19-27. PubMed ID: 26239699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational Design of a Zr-MOF@Curli-Polyelectrolyte Hybrid Membrane toward Efficient Chemical Protection, Moisture Permeation, and Catalytic Detoxification.
    Liu J; Li H; Yan B; Zhong C; Zhao Y; Guo X; Zhong J
    ACS Appl Mater Interfaces; 2022 Nov; 14(47):53421-53432. PubMed ID: 36384285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reinforcement of dental resin composite via zirconium hydroxide coating and phosphate ester monomer conditioning of nano-zirconia fillers.
    Wu X; Dai S; Chen Y; He F; Xie H; Chen C
    J Mech Behav Biomed Mater; 2019 Jun; 94():32-41. PubMed ID: 30856477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photothermally Enhanced Detoxification of Chemical Warfare Agent Simulants Using Bioinspired Core-Shell Dopamine-Melanin@Metal-Organic Frameworks and Their Fabrics.
    Yao A; Jiao X; Chen D; Li C
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):7927-7935. PubMed ID: 30688436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in Metal-Organic Frameworks for the Removal of Chemical Warfare Agents: Insights into Hydrolysis and Oxidation Reaction Mechanisms.
    Oliver MC; Huang L
    Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid-Phase Detoxification of Chemical Warfare Agents using Zirconium-Based Metal Organic Frameworks and the Moisture Effects: Analyze via Digestion.
    Wang H; Mahle JJ; Tovar TM; Peterson GW; Hall MG; DeCoste JB; Buchanan JH; Karwacki CJ
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):21109-21116. PubMed ID: 31117457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical Protective Textiles of UiO-66-Integrated PVDF Composite Fibers with Rapid Heterogeneous Decontamination of Toxic Organophosphates.
    Dwyer DB; Dugan N; Hoffman N; Cooke DJ; Hall MG; Tovar TM; Bernier WE; DeCoste J; Pomerantz NL; Jones WE
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34585-34591. PubMed ID: 30207449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Assembled MOF-on-MOF Nanofabrics for Synergistic Detoxification of Chemical Warfare Agent Simulants.
    Xu R; Wu T; Jiao X; Chen D; Li C
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30360-30371. PubMed ID: 37311009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid activation of basic hydrogen peroxide by borate and efficient destruction of toxic industrial chemicals (TICs) and chemical warfare agents (CWAs).
    Zhao S; Xi H; Zuo Y; Han S; Zhu Y; Li Z; Yuan L; Wang Z; Liu C
    J Hazard Mater; 2019 Apr; 367():91-98. PubMed ID: 30594727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid-repellent textile surfaces using zirconium (Zr)-based porous materials and a polyhedral oligomeric silsesquioxane coating.
    Jung H; Kim MK; Jang S
    J Colloid Interface Sci; 2020 Mar; 563():363-369. PubMed ID: 31887700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical Warfare Agents Detoxification Properties of Zirconium Metal-Organic Frameworks by Synergistic Incorporation of Nucleophilic and Basic Sites.
    Gil-San-Millan R; López-Maya E; Hall M; Padial NM; Peterson GW; DeCoste JB; Rodríguez-Albelo LM; Oltra JE; Barea E; Navarro JAR
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23967-23973. PubMed ID: 28653852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.