These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34953283)

  • 1. Assessing mechanical vibration-altered wall shear stress in digital arteries.
    Noe L C; Settembre N
    J Biomech; 2022 Jan; 131():110893. PubMed ID: 34953283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coronary arteries hemodynamics: effect of arterial geometry on hemodynamic parameters causing atherosclerosis.
    Wong KKL; Wu J; Liu G; Huang W; Ghista DN
    Med Biol Eng Comput; 2020 Aug; 58(8):1831-1843. PubMed ID: 32519006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of anesthesia and fluid-structure interaction on simulated shear stress patterns in the carotid bifurcation of mice.
    De Wilde D; Trachet B; De Meyer G; Segers P
    J Biomech; 2016 Sep; 49(13):2741-2747. PubMed ID: 27342001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Haemodynamic assessment of human coronary arteries is affected by degree of freedom of artery movement.
    Javadzadegan A; Yong AS; Chang M; Ng MK; Behnia M; Kritharides L
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):260-272. PubMed ID: 27467730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Errors in the estimation of wall shear stress by maximum Doppler velocity.
    Mynard JP; Wasserman BA; Steinman DA
    Atherosclerosis; 2013 Apr; 227(2):259-66. PubMed ID: 23398945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the in vivo wall shear stress environment of human fetus umbilical arteries and veins.
    Saw SN; Dawn C; Biswas A; Mattar CNZ; Yap CH
    Biomech Model Mechanobiol; 2017 Feb; 16(1):197-211. PubMed ID: 27456489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of intimal flap motion on flow in acute type B aortic dissection by using fluid-structure interaction.
    Chong MY; Gu B; Chan BT; Ong ZC; Xu XY; Lim E
    Int J Numer Method Biomed Eng; 2020 Dec; 36(12):e3399. PubMed ID: 32862487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical coherence tomography-based patient-specific coronary artery reconstruction and fluid-structure interaction simulation.
    Wang J; Paritala PK; Mendieta JB; Komori Y; Raffel OC; Gu Y; Li Z
    Biomech Model Mechanobiol; 2020 Feb; 19(1):7-20. PubMed ID: 31292774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wall shear stress as measured in vivo: consequences for the design of the arterial system.
    Reneman RS; Hoeks AP
    Med Biol Eng Comput; 2008 May; 46(5):499-507. PubMed ID: 18324431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid-structure interaction modeling of abdominal aortic aneurysms: the impact of patient-specific inflow conditions and fluid/solid coupling.
    Chandra S; Raut SS; Jana A; Biederman RW; Doyle M; Muluk SC; Finol EA
    J Biomech Eng; 2013 Aug; 135(8):81001. PubMed ID: 23719760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wall shear stress mapping for human femoral artery based on ultrafast ultrasound vector Doppler estimations.
    Wang IC; Huang H; Chang WT; Huang CC
    Med Phys; 2021 Nov; 48(11):6755-6764. PubMed ID: 34525217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Method for estimating pulsatile wall shear stress from one-dimensional velocity waveforms.
    Muskat JC; Babbs CF; Goergen CJ; Rayz VL
    Physiol Rep; 2023 Apr; 11(7):e15628. PubMed ID: 37066977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation.
    Younis HF; Kaazempur-Mofrad MR; Chan RC; Isasi AG; Hinton DP; Chau AH; Kim LA; Kamm RD
    Biomech Model Mechanobiol; 2004 Sep; 3(1):17-32. PubMed ID: 15300454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasound Based Computational Fluid Dynamics Assessment of Brachial Artery Wall Shear Stress in Preeclamptic Pregnancy.
    Pewowaruk RJ; Racine J; Iruretagoyena JI; Roldán-Alzate A
    Cardiovasc Eng Technol; 2020 Dec; 11(6):760-768. PubMed ID: 33025370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-periodicity of blood flow and its influence on wall shear stress in the carotid artery bifurcation: An in vivo measurement-based computational study.
    Zhou X; Yin L; Xu L; Liang F
    J Biomech; 2020 Mar; 101():109617. PubMed ID: 31959390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluid-Structure Interaction Simulations of Repaired Type A Aortic Dissection: a Comprehensive Comparison With Rigid Wall Models.
    Zhu Y; Mirsadraee S; Rosendahl U; Pepper J; Xu XY
    Front Physiol; 2022; 13():913457. PubMed ID: 35774287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On using experimentally estimated wall shear stresses to validate numerically predicted results.
    Walsh M; McGloughlin T; Liepsch DW; O'Brien T; Morris L; Ansari AR
    Proc Inst Mech Eng H; 2003; 217(2):77-90. PubMed ID: 12666774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.