These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34953721)

  • 1. Orchestrating plant direct and indirect phosphate uptake pathways.
    Wang P; Limpens E; Yao R
    Trends Plant Sci; 2022 Apr; 27(4):319-321. PubMed ID: 34953721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A phosphate starvation response-regulated receptor-like kinase, OsADK1, is required for mycorrhizal symbiosis and phosphate starvation responses.
    Shi J; Zhao B; Jin R; Hou L; Zhang X; Dai H; Yu N; Wang E
    New Phytol; 2022 Dec; 236(6):2282-2293. PubMed ID: 36254112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional regulation of host NH₄⁺ transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots.
    Pérez-Tienda J; Corrêa A; Azcón-Aguilar C; Ferrol N
    Plant Physiol Biochem; 2014 Feb; 75():1-8. PubMed ID: 24361504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Host SPX-PHR regulatory circuit: the molecular dynamo steering mycorrhization in plants.
    Srivastava R; Roychowdhury A; Kumar R
    Plant Cell Rep; 2022 May; 41(5):1329-1332. PubMed ID: 35220470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants.
    Wang S; Chen A; Xie K; Yang X; Luo Z; Chen J; Zeng D; Ren Y; Yang C; Wang L; Feng H; López-Arredondo DL; Herrera-Estrella LR; Xu G
    Proc Natl Acad Sci U S A; 2020 Jul; 117(28):16649-16659. PubMed ID: 32586957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A phosphate starvation response-centered network regulates mycorrhizal symbiosis.
    Shi J; Zhao B; Zheng S; Zhang X; Wang X; Dong W; Xie Q; Wang G; Xiao Y; Chen F; Yu N; Wang E
    Cell; 2021 Oct; 184(22):5527-5540.e18. PubMed ID: 34644527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The good, the bad, and the phosphate: regulation of beneficial and detrimental plant-microbe interactions by the plant phosphate status.
    Paries M; Gutjahr C
    New Phytol; 2023 Jul; 239(1):29-46. PubMed ID: 37145847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphate Suppression of Arbuscular Mycorrhizal Symbiosis Involves Gibberellic Acid Signaling.
    Nouri E; Surve R; Bapaume L; Stumpe M; Chen M; Zhang Y; Ruyter-Spira C; Bouwmeester H; Glauser G; Bruisson S; Reinhardt D
    Plant Cell Physiol; 2021 Oct; 62(6):959-970. PubMed ID: 34037236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis.
    Branscheid A; Sieh D; Pant BD; May P; Devers EA; Elkrog A; Schauser L; Scheible WR; Krajinski F
    Mol Plant Microbe Interact; 2010 Jul; 23(7):915-26. PubMed ID: 20521954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PHOSPHATE STARVATION RESPONSE transcription factors enable arbuscular mycorrhiza symbiosis.
    Das D; Paries M; Hobecker K; Gigl M; Dawid C; Lam HM; Zhang J; Chen M; Gutjahr C
    Nat Commun; 2022 Jan; 13(1):477. PubMed ID: 35078978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of nutrient signals and carbon allocation on the expression of phosphate and nitrogen transporter genes in winter wheat (Triticum aestivum L.) roots colonized by arbuscular mycorrhizal fungi.
    Tian H; Yuan X; Duan J; Li W; Zhai B; Gao Y
    PLoS One; 2017; 12(2):e0172154. PubMed ID: 28207830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OsADK1, a novel kinase regulating arbuscular mycorrhizal symbiosis in rice.
    Guo R; Wu YN; Liu CC; Liu YN; Tian L; Cheng JF; Pan Z; Wang D; Wang B
    New Phytol; 2022 Apr; 234(1):256-268. PubMed ID: 35133010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula.
    Bonneau L; Huguet S; Wipf D; Pauly N; Truong HN
    New Phytol; 2013 Jul; 199(1):188-202. PubMed ID: 23506613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights into the signaling pathways controlling defense gene expression in rice roots during the arbuscular mycorrhizal symbiosis.
    Campos-Soriano L; Segundo BS
    Plant Signal Behav; 2011 Apr; 6(4):553-7. PubMed ID: 21422823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex.
    Gutjahr C; Gobbato E; Choi J; Riemann M; Johnston MG; Summers W; Carbonnel S; Mansfield C; Yang SY; Nadal M; Acosta I; Takano M; Jiao WB; Schneeberger K; Kelly KA; Paszkowski U
    Science; 2015 Dec; 350(6267):1521-4. PubMed ID: 26680197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of periarbuscular membranes visualized with a fluorescent phosphate transporter in arbuscular mycorrhizal roots of rice.
    Kobae Y; Hata S
    Plant Cell Physiol; 2010 Mar; 51(3):341-53. PubMed ID: 20097910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systemic induction of phosphatidylinositol-based signaling in leaves of arbuscular mycorrhizal rice plants.
    Campo S; San Segundo B
    Sci Rep; 2020 Sep; 10(1):15896. PubMed ID: 32985595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Lotus japonicus MAMI gene links root development, arbuscular mycorrhizal symbiosis and phosphate availability.
    Volpe V; Dell'Aglio E; Bonfante P
    Plant Signal Behav; 2013 Mar; 8(3):e23414. PubMed ID: 23333966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How does phosphate status influence the development of the arbuscular mycorrhizal symbiosis?
    Gu M; Chen A; Dai X; Liu W; Xu G
    Plant Signal Behav; 2011 Sep; 6(9):1300-4. PubMed ID: 22019636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SlSPX1-SlPHR complexes mediate the suppression of arbuscular mycorrhizal symbiosis by phosphate repletion in tomato.
    Liao D; Sun C; Liang H; Wang Y; Bian X; Dong C; Niu X; Yang M; Xu G; Chen A; Wu S
    Plant Cell; 2022 Sep; 34(10):4045-4065. PubMed ID: 35863053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.