These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34953831)

  • 21. Terra and Aqua satellites track tiger mosquito invasion: modelling the potential distribution of Aedes albopictus in north-eastern Italy.
    Neteler M; Roiz D; Rocchini D; Castellani C; Rizzoli A
    Int J Health Geogr; 2011 Aug; 10():49. PubMed ID: 21812983
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Incorporating long-term satellite-based aerosol optical depth, localized land use data, and meteorological variables to estimate ground-level PM
    Jung CR; Hwang BF; Chen WT
    Environ Pollut; 2018 Jun; 237():1000-1010. PubMed ID: 29157969
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Land Use Change and Climate Variation in the Three Gorges Reservoir Catchment from 2000 to 2015 Based on the Google Earth Engine.
    Hao B; Ma M; Li S; Li Q; Hao D; Huang J; Ge Z; Yang H; Han X
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31067808
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deriving meteorological variables across Africa for the study and control of vector-borne disease: a comparison of remote sensing and spatial interpolation of climate.
    Hay SI; Lennon JJ
    Trop Med Int Health; 1999 Jan; 4(1):58-71. PubMed ID: 10203175
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatial Evaluation of Soil Moisture (SM), Land Surface Temperature (LST), and LST-Derived SM Indexes Dynamics during SMAPVEX12.
    Sun H; Zhou B; Liu H
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30871050
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Irrigation cooling effect on land surface temperature across China based on satellite observations.
    Yang Q; Huang X; Tang Q
    Sci Total Environ; 2020 Feb; 705():135984. PubMed ID: 31841916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intercomparison of In Situ Sensors for Ground-Based Land Surface Temperature Measurements.
    Krishnan P; Meyers TP; Hook SJ; Heuer M; Senn D; Dumas EJ
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32942619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Advances in Quantitative Earth Remote Sensing: Past, Present and Future.
    Asrar GR
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reducing the Discrepancy Between ASTER and MODIS Land Surface Temperature Products.
    Liu Y; Yamaguchi Y; Ke C
    Sensors (Basel); 2007 Dec; 7(12):3043-3057. PubMed ID: 28903278
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A long-term dataset of lake surface water temperature over the Tibetan Plateau derived from AVHRR 1981-2015.
    Liu B; Wan W; Xie H; Li H; Zhu S; Zhang G; Wen L; Hong Y
    Sci Data; 2019 May; 6(1):48. PubMed ID: 31048686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatial Scale Effects of the Relationship between Fractional Vegetation Coverage and Land Surface Temperature in Horqin Sandy Land, North China.
    Qiao R; Dong C; Ji S; Chang X
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696127
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temporal change and its spatial variety on land surface temperature and land use changes in the Red River Delta, Vietnam, using MODIS time-series imagery.
    Van Nguyen O; Kawamura K; Trong DP; Gong Z; Suwandana E
    Environ Monit Assess; 2015 Jul; 187(7):464. PubMed ID: 26113204
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reconstruction of 60-year (1961-2020) surface air temperature on the Tibetan Plateau by fusing MODIS and ERA5 temperatures.
    Qin J; He M; Jiang H; Lu N
    Sci Total Environ; 2022 Dec; 853():158406. PubMed ID: 36055515
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of annual and seasonal daytime and nighttime trends of MODIS LST over Greece - climate change implications.
    Eleftheriou D; Kiachidis K; Kalmintzis G; Kalea A; Bantasis C; Koumadoraki P; Spathara ME; Tsolaki A; Tzampazidou MI; Gemitzi A
    Sci Total Environ; 2018 Mar; 616-617():937-947. PubMed ID: 29107377
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimating daily air temperature across the Southeastern United States using high-resolution satellite data: A statistical modeling study.
    Shi L; Liu P; Kloog I; Lee M; Kosheleva A; Schwartz J
    Environ Res; 2016 Apr; 146():51-8. PubMed ID: 26717080
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of a Machine Learning Algorithm in Generating an Evapotranspiration Data Product From Coupled Thermal Infrared and Microwave Satellite Observations.
    Fang L; Zhan X; Kalluri S; Yu P; Hain C; Anderson M; Laszlo I
    Front Big Data; 2022; 5():768676. PubMed ID: 35668815
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimal satellite orbit configuration for global ocean color product coverage.
    Mikelsons K; Wang M
    Opt Express; 2019 Apr; 27(8):A445-A457. PubMed ID: 31052895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gradient boosting machine learning to improve satellite-derived column water vapor measurement error.
    Just AC; Liu Y; Sorek-Hamer M; Rush J; Dorman M; Chatfield R; Wang Y; Lyapustin A; Kloog I
    Atmos Meas Tech; 2020; 13(9):4669-4681. PubMed ID: 33193906
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Observed behaviours of precipitable water vapour and precipitation intensity in response to upper air profiles estimated from surface air temperature.
    Fujita M; Sato T
    Sci Rep; 2017 Jul; 7(1):4233. PubMed ID: 28684742
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Satellite-based estimation of hourly PM
    She Q; Choi M; Belle JH; Xiao Q; Bi J; Huang K; Meng X; Geng G; Kim J; He K; Liu M; Liu Y
    Chemosphere; 2020 Jan; 239():124678. PubMed ID: 31494323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.