BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34954114)

  • 41. Oak extracts modulate circadian rhythms of clock gene expression in vitro and wheel-running activity in mice.
    Haraguchi A; Du Y; Shiraishi R; Takahashi Y; Nakamura TJ; Shibata S
    Sleep Biol Rhythms; 2022 Apr; 20(2):255-266. PubMed ID: 38469255
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Circadian rhythms in the mouse reproductive axis during the estrous cycle and pregnancy.
    Yaw AM; Duong TV; Nguyen D; Hoffmann HM
    J Neurosci Res; 2021 Jan; 99(1):294-308. PubMed ID: 32128870
    [TBL] [Abstract][Full Text] [Related]  

  • 43.
    Schirmer AE; Kumar V; Schook A; Song EJ; Marshall MS; Takahashi JS
    Front Neurosci; 2023; 17():1166137. PubMed ID: 37389366
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An Isoform-Selective Modulator of Cryptochrome 1 Regulates Circadian Rhythms in Mammals.
    Miller S; Aikawa Y; Sugiyama A; Nagai Y; Hara A; Oshima T; Amaike K; Kay SA; Itami K; Hirota T
    Cell Chem Biol; 2020 Sep; 27(9):1192-1198.e5. PubMed ID: 32502390
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neonatal alcohol exposure differentially alters clock gene oscillations within the suprachiasmatic nucleus, cerebellum, and liver of adult rats.
    Farnell YZ; Allen GC; Nahm SS; Neuendorff N; West JR; Chen WJ; Earnest DJ
    Alcohol Clin Exp Res; 2008 Mar; 32(3):544-52. PubMed ID: 18215209
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of a novel cryptochrome differentiating domain required for feedback repression in circadian clock function.
    Khan SK; Xu H; Ukai-Tadenuma M; Burton B; Wang Y; Ueda HR; Liu AC
    J Biol Chem; 2012 Jul; 287(31):25917-26. PubMed ID: 22692217
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Calcium Circadian Rhythmicity in the Suprachiasmatic Nucleus: Cell Autonomy and Network Modulation.
    Noguchi T; Leise TL; Kingsbury NJ; Diemer T; Wang LL; Henson MA; Welsh DK
    eNeuro; 2017; 4(4):. PubMed ID: 28828400
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Oscillating on borrowed time: diffusible signals from immortalized suprachiasmatic nucleus cells regulate circadian rhythmicity in cultured fibroblasts.
    Allen G; Rappe J; Earnest DJ; Cassone VM
    J Neurosci; 2001 Oct; 21(20):7937-43. PubMed ID: 11588167
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Photoperiod differentially regulates clock genes' expression in the suprachiasmatic nucleus of Syrian hamster.
    Tournier BB; Menet JS; Dardente H; Poirel VJ; Malan A; Masson-Pévet M; Pévet P; Vuillez P
    Neuroscience; 2003; 118(2):317-22. PubMed ID: 12699768
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Circadian PER2::LUC rhythms in the olfactory bulb of freely moving mice depend on the suprachiasmatic nucleus but not on behaviour rhythms.
    Ono D; Honma S; Honma K
    Eur J Neurosci; 2015 Dec; 42(12):3128-37. PubMed ID: 26489367
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differential roles of AVP and VIP signaling in the postnatal changes of neural networks for coherent circadian rhythms in the SCN.
    Ono D; Honma S; Honma K
    Sci Adv; 2016 Sep; 2(9):e1600960. PubMed ID: 27626074
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The circadian clock regulates rhythmic erythropoietin expression in the murine kidney.
    Sciesielski LK; Felten M; Michalick L; Kirschner KM; Lattanzi G; Jacobi CLJ; Wallach T; Lang V; Landgraf D; Kramer A; Dame C
    Kidney Int; 2021 Nov; 100(5):1071-1080. PubMed ID: 34332958
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cognitive dysfunction, elevated anxiety, and reduced cocaine response in circadian clock-deficient cryptochrome knockout mice.
    De Bundel D; Gangarossa G; Biever A; Bonnefont X; Valjent E
    Front Behav Neurosci; 2013; 7():152. PubMed ID: 24187535
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Knockout-Rescue Embryonic Stem Cell-Derived Mouse Reveals Circadian-Period Control by Quality and Quantity of CRY1.
    Ode KL; Ukai H; Susaki EA; Narumi R; Matsumoto K; Hara J; Koide N; Abe T; Kanemaki MT; Kiyonari H; Ueda HR
    Mol Cell; 2017 Jan; 65(1):176-190. PubMed ID: 28017587
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Melatonin feedback on clock genes: a theory involving the proteasome.
    Vriend J; Reiter RJ
    J Pineal Res; 2015 Jan; 58(1):1-11. PubMed ID: 25369242
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cycling of CRYPTOCHROME proteins is not necessary for circadian-clock function in mammalian fibroblasts.
    Fan Y; Hida A; Anderson DA; Izumo M; Johnson CH
    Curr Biol; 2007 Jul; 17(13):1091-100. PubMed ID: 17583506
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cryptochrome: the second photoactive pigment in the eye and its role in circadian photoreception.
    Sancar A
    Annu Rev Biochem; 2000; 69():31-67. PubMed ID: 10966452
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mammalian clock gene Cryptochrome regulates arthritis via proinflammatory cytokine TNF-alpha.
    Hashiramoto A; Yamane T; Tsumiyama K; Yoshida K; Komai K; Yamada H; Yamazaki F; Doi M; Okamura H; Shiozawa S
    J Immunol; 2010 Feb; 184(3):1560-5. PubMed ID: 20042581
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chronic ethanol consumption disrupts the core molecular clock and diurnal rhythms of metabolic genes in the liver without affecting the suprachiasmatic nucleus.
    Filiano AN; Millender-Swain T; Johnson R; Young ME; Gamble KL; Bailey SM
    PLoS One; 2013; 8(8):e71684. PubMed ID: 23951220
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cloning and circadian expression of rat Cry1.
    Park K; Kang HM
    Mol Cells; 2004 Oct; 18(2):256-60. PubMed ID: 15529004
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.