BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34954142)

  • 1. Protein acetylation-mediated cross regulation of acetic acid and ethanol synthesis in the gas-fermenting Clostridium ljungdahlii.
    Liu Y; Zhang Z; Jiang W; Gu Y
    J Biol Chem; 2022 Feb; 298(2):101538. PubMed ID: 34954142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactive Regulation of Formate Dehydrogenase during CO
    Zhang L; Liu Y; Zhao R; Zhang C; Jiang W; Gu Y
    mBio; 2020 Aug; 11(4):. PubMed ID: 32817100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic Engineering of Gas-Fermenting
    Jia D; He M; Tian Y; Shen S; Zhu X; Wang Y; Zhuang Y; Jiang W; Gu Y
    ACS Synth Biol; 2021 Oct; 10(10):2628-2638. PubMed ID: 34549587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pleiotropic Regulator GssR Positively Regulates Autotrophic Growth of Gas-Fermenting
    Zhang H; Zhang C; Nie X; Wu Y; Yang C; Jiang W; Gu Y
    Microorganisms; 2023 Jul; 11(8):. PubMed ID: 37630531
    [No Abstract]   [Full Text] [Related]  

  • 5. Engineering Clostridium ljungdahlii as the gas-fermenting cell factory for the production of biofuels and biochemicals.
    Zhang L; Zhao R; Jia D; Jiang W; Gu Y
    Curr Opin Chem Biol; 2020 Dec; 59():54-61. PubMed ID: 32480247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-Cas12a-Mediated Gene Deletion and Regulation in
    Zhao R; Liu Y; Zhang H; Chai C; Wang J; Jiang W; Gu Y
    ACS Synth Biol; 2019 Oct; 8(10):2270-2279. PubMed ID: 31526005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pooled CRISPR Interference Screening Identifies Crucial Transcription Factors in Gas-Fermenting
    Zhang H; Feng H; Xing XH; Jiang W; Zhang C; Gu Y
    ACS Synth Biol; 2024 Jun; 13(6):1893-1905. PubMed ID: 38825826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii.
    Banerjee A; Leang C; Ueki T; Nevin KP; Lovley DR
    Appl Environ Microbiol; 2014 Apr; 80(8):2410-6. PubMed ID: 24509933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethanol Metabolism Dynamics in Clostridium ljungdahlii Grown on Carbon Monoxide.
    Liu ZY; Jia DC; Zhang KD; Zhu HF; Zhang Q; Jiang WH; Gu Y; Li FL
    Appl Environ Microbiol; 2020 Jul; 86(14):. PubMed ID: 32414802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of Heterologous Mevalonic Acid Pathway Enzymes in Clostridium ljungdahlii for the Conversion of Fructose and of Syngas to Mevalonate and Isoprene.
    Diner BA; Fan J; Scotcher MC; Wells DH; Whited GM
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29054870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9-Based Efficient Genome Editing in Clostridium ljungdahlii, an Autotrophic Gas-Fermenting Bacterium.
    Huang H; Chai C; Li N; Rowe P; Minton NP; Yang S; Jiang W; Gu Y
    ACS Synth Biol; 2016 Dec; 5(12):1355-1361. PubMed ID: 27276212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L-Cys-Assisted Conversion of H
    Yang Y; Cao W; Shen F; Liu Z; Qin L; Liang X; Wan Y
    Appl Biochem Biotechnol; 2023 Feb; 195(2):844-860. PubMed ID: 36214953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of bioethanol production in syngas fermentation with Clostridium ljungdahlii using nanoparticles.
    Kim YK; Park SE; Lee H; Yun JY
    Bioresour Technol; 2014 May; 159():446-50. PubMed ID: 24703605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Clostridium ljungdahlii OTA1: a non-autotrophic hyper ethanol-producing strain.
    Whitham JM; Schulte MJ; Bobay BG; Bruno-Barcena JM; Chinn MS; Flickinger MC; Pawlak JJ; Grunden AM
    Appl Microbiol Biotechnol; 2017 Feb; 101(4):1615-1630. PubMed ID: 27866253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico metabolic engineering of Clostridium ljungdahlii for synthesis gas fermentation.
    Chen J; Henson MA
    Metab Eng; 2016 Nov; 38():389-400. PubMed ID: 27720802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional dissection and modulation of the BirA protein for improved autotrophic growth of gas-fermenting Clostridium ljungdahlii.
    Zhang C; Nie X; Zhang H; Wu Y; He H; Yang C; Jiang W; Gu Y
    Microb Biotechnol; 2021 Sep; 14(5):2072-2089. PubMed ID: 34291572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid.
    Abubackar HN; Veiga MC; Kennes C
    Bioresour Technol; 2015 Jun; 186():122-127. PubMed ID: 25812815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Traits of selected Clostridium strains for syngas fermentation to ethanol.
    Martin ME; Richter H; Saha S; Angenent LT
    Biotechnol Bioeng; 2016 Mar; 113(3):531-9. PubMed ID: 26331212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phage serine integrase-mediated genome engineering for efficient expression of chemical biosynthetic pathway in gas-fermenting Clostridium ljungdahlii.
    Huang H; Chai C; Yang S; Jiang W; Gu Y
    Metab Eng; 2019 Mar; 52():293-302. PubMed ID: 30633974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy Conservation and Carbon Flux Distribution During Fermentation of CO or H
    Zhu HF; Liu ZY; Zhou X; Yi JH; Lun ZM; Wang SN; Tang WZ; Li FL
    Front Microbiol; 2020; 11():416. PubMed ID: 32256473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.