These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34954142)

  • 21. Industrial Acetogenic Biocatalysts: A Comparative Metabolic and Genomic Analysis.
    Bengelsdorf FR; Poehlein A; Linder S; Erz C; Hummel T; Hoffmeister S; Daniel R; Dürre P
    Front Microbiol; 2016; 7():1036. PubMed ID: 27458439
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acetic acid, growth rate, and mass transfer govern shifts in CO metabolism of Clostridium autoethanogenum.
    Elisiário MP; Van Hecke W; De Wever H; Noorman H; Straathof AJJ
    Appl Microbiol Biotechnol; 2023 Sep; 107(17):5329-5340. PubMed ID: 37410136
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acetate augmentation boosts the ethanol production rate and specificity by Clostridium ljungdahlii during gas fermentation with pure carbon monoxide.
    Schulz S; Molitor B; Angenent LT
    Bioresour Technol; 2023 Feb; 369():128387. PubMed ID: 36435417
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rediverting carbon flux in Clostridium ljungdahlii using CRISPR interference (CRISPRi).
    Woolston BM; Emerson DF; Currie DH; Stephanopoulos G
    Metab Eng; 2018 Jul; 48():243-253. PubMed ID: 29906505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii.
    Ueki T; Nevin KP; Woodard TL; Lovley DR
    mBio; 2014 Oct; 5(5):e01636-14. PubMed ID: 25336453
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic response of Clostridium ljungdahlii to oxygen exposure.
    Whitham JM; Tirado-Acevedo O; Chinn MS; Pawlak JJ; Grunden AM
    Appl Environ Microbiol; 2015 Dec; 81(24):8379-91. PubMed ID: 26431975
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Programmable Acetylation Modification of Bacterial Proteins by a Cas12a-Guided Acetyltransferase.
    Liu Y; Zhang Z; Zuo N; Jiang W; Gu Y
    ACS Synth Biol; 2023 Jul; 12(7):2135-2146. PubMed ID: 37358911
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Maintenance of ATP Homeostasis Triggers Metabolic Shifts in Gas-Fermenting Acetogens.
    Valgepea K; de Souza Pinto Lemgruber R; Meaghan K; Palfreyman RW; Abdalla T; Heijstra BD; Behrendorff JB; Tappel R; Köpke M; Simpson SD; Nielsen LK; Marcellin E
    Cell Syst; 2017 May; 4(5):505-515.e5. PubMed ID: 28527885
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tracing carbon monoxide uptake by Clostridium ljungdahlii during ethanol fermentation using (13)C-enrichment technique.
    Yun SI; Gang SJ; Ro HM; Lee MJ; Choi WJ; Hong SG; Kang KK
    Bioprocess Biosyst Eng; 2013 May; 36(5):591-5. PubMed ID: 22940807
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient butanol-ethanol (B-E) production from carbon monoxide fermentation by Clostridium carboxidivorans.
    Fernández-Naveira Á; Abubackar HN; Veiga MC; Kennes C
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):3361-70. PubMed ID: 26810079
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Absolute Proteome Quantification in the Gas-Fermenting Acetogen
    Valgepea K; Talbo G; Takemori N; Takemori A; Ludwig C; Mahamkali V; Mueller AP; Tappel R; Köpke M; Simpson SD; Nielsen LK; Marcellin E
    mSystems; 2022 Apr; 7(2):e0002622. PubMed ID: 35384696
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physiological response of Clostridium ljungdahlii DSM 13528 of ethanol production under different fermentation conditions.
    Xie BT; Liu ZY; Tian L; Li FL; Chen XH
    Bioresour Technol; 2015 Feb; 177():302-7. PubMed ID: 25496952
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fermentation of biomass-generated synthesis gas: effects of nitric oxide.
    Ahmed A; Lewis RS
    Biotechnol Bioeng; 2007 Aug; 97(5):1080-6. PubMed ID: 17171719
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermodynamic and Kinetic Modeling Directs Pathway Optimization for Isopropanol Production in a Gas-Fermenting Bacterium.
    Lo J; Wu C; Humphreys JR; Yang B; Jiang Z; Wang X; Maness P; Tsesmetzis N; Xiong W
    mSystems; 2023 Apr; 8(2):e0127422. PubMed ID: 36971551
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A high gas fraction, reduced power, syngas bioprocessing method demonstrated with a Clostridium ljungdahlii OTA1 paper biocomposite.
    Schulte MJ; Wiltgen J; Ritter J; Mooney CB; Flickinger MC
    Biotechnol Bioeng; 2016 Sep; 113(9):1913-23. PubMed ID: 26927418
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RNA-seq-based comparative transcriptome analysis of the syngas-utilizing bacterium Clostridium ljungdahlii DSM 13528 grown autotrophically and heterotrophically.
    Tan Y; Liu J; Chen X; Zheng H; Li F
    Mol Biosyst; 2013 Nov; 9(11):2775-84. PubMed ID: 24056499
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of selenium and tungsten on cell growth and metabolite production in syngas fermentation using "Clostridium autoethanogenum".
    An T; Kim YK
    J Biotechnol; 2022 Sep; 356():60-64. PubMed ID: 35878811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using Clostridium ragsdalei.
    Devarapalli M; Atiyeh HK; Phillips JR; Lewis RS; Huhnke RL
    Bioresour Technol; 2016 Jun; 209():56-65. PubMed ID: 26950756
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen.
    Leang C; Ueki T; Nevin KP; Lovley DR
    Appl Environ Microbiol; 2013 Feb; 79(4):1102-9. PubMed ID: 23204413
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formic Acid Formation by
    Oswald F; Stoll IK; Zwick M; Herbig S; Sauer J; Boukis N; Neumann A
    Front Bioeng Biotechnol; 2018; 6():6. PubMed ID: 29484294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.