BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 34954361)

  • 1. Strategy for high-yield astaxanthin recovery directly from wet Haematococcus pluvialis without pretreatment.
    Aye Myint A; Hariyanto P; Irshad M; Ruqian C; Wulandari S; Eui Hong M; Jun Sim S; Kim J
    Bioresour Technol; 2022 Feb; 346():126616. PubMed ID: 34954361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction and separation of astaxanthin with the help of pre-treatment of Haematococcus pluvialis microalgae biomass using aqueous two-phase systems based on deep eutectic solvents.
    Nemani N; Dehnavi SM; Pazuki G
    Sci Rep; 2024 Mar; 14(1):5420. PubMed ID: 38443435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in biorefinery of astaxanthin from Haematococcus pluvialis.
    Khoo KS; Lee SY; Ooi CW; Fu X; Miao X; Ling TC; Show PL
    Bioresour Technol; 2019 Sep; 288():121606. PubMed ID: 31178260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell disruption and astaxanthin extraction from Haematococcus pluvialis: Recent advances.
    Kim B; Youn Lee S; Lakshmi Narasimhan A; Kim S; Oh YK
    Bioresour Technol; 2022 Jan; 343():126124. PubMed ID: 34653624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extraction of natural astaxanthin from Haematococcus pluvialis using liquid biphasic flotation system.
    Khoo KS; Chew KW; Ooi CW; Ong HC; Ling TC; Show PL
    Bioresour Technol; 2019 Oct; 290():121794. PubMed ID: 31319214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-efficiency cell disruption and astaxanthin recovery from Haematococcus pluvialis cyst cells using room-temperature imidazolium-based ionic liquid/water mixtures.
    Choi SA; Oh YK; Lee J; Sim SJ; Hong ME; Park JY; Kim MS; Kim SW; Lee JS
    Bioresour Technol; 2019 Feb; 274():120-126. PubMed ID: 30502602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extraction of Astaxanthin and Lutein from Microalga
    Molino A; Mehariya S; Iovine A; Larocca V; Di Sanzo G; Martino M; Casella P; Chianese S; Musmarra D
    Mar Drugs; 2018 Nov; 16(11):. PubMed ID: 30400304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extraction of astaxanthin from Haematococcus pluvialis with hydrophobic deep eutectic solvents based on oleic acid.
    Pitacco W; Samorì C; Pezzolesi L; Gori V; Grillo A; Tiecco M; Vagnoni M; Galletti P
    Food Chem; 2022 Jun; 379():132156. PubMed ID: 35065488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced toxicity-free astaxanthin extraction from Haematococcus pluvialis via concurrent cell disruption and demulsification.
    Young Lee J; Seop Lee J; Jun Sim S
    Bioresour Technol; 2024 Jun; 406():130974. PubMed ID: 38879049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extraction of Valuable Biomolecules from the Microalga
    Gherabli A; Grimi N; Lemaire J; Vorobiev E; Lebovka N
    Molecules; 2023 Feb; 28(5):. PubMed ID: 36903334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supplementation with
    Wang X; Mou JH; Qin ZH; Hao TB; Zheng L; Buhagiar J; Liu YH; Balamurugan S; He Y; Lin CSK; Yang WD; Li HY
    J Agric Food Chem; 2022 Apr; 70(15):4677-4689. PubMed ID: 35384649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifaceted strategies for economic production of microalgae Haematococcus pluvialis-derived astaxanthin via direct conversion of CO
    Sung YJ; Sim SJ
    Bioresour Technol; 2022 Jan; 344(Pt B):126255. PubMed ID: 34757226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Astaxanthin from
    Mota GCP; Moraes LBS; Oliveira CYB; Oliveira DWS; Abreu JL; Dantas DMM; Gálvez AO
    Prep Biochem Biotechnol; 2022; 52(5):598-609. PubMed ID: 34424829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The combination of uridine and nitrogen-deprivation promotes the efficient formation of astaxanthin-rich motile cells in Haematococcus pluvialis.
    Xing H; Sun X; Xu N; Su X; Qin Y; Zhang L; Liu K; Li M; Hu C
    Bioresour Technol; 2024 Feb; 393():130150. PubMed ID: 38049016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of astaxanthin production in Haematococcus pluvialis using zinc oxide nanoparticles.
    Nasri N; Keyhanfar M; Behbahani M; Dini G
    J Biotechnol; 2021 Dec; 342():72-78. PubMed ID: 34673120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response surface methodology for ultrasound-assisted extraction of astaxanthin from Haematococcus pluvialis.
    Zou TB; Jia Q; Li HW; Wang CX; Wu HF
    Mar Drugs; 2013 May; 11(5):1644-55. PubMed ID: 23697948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using green alga Haematococcus pluvialis for astaxanthin and lipid co-production: Advances and outlook.
    Ren Y; Deng J; Huang J; Wu Z; Yi L; Bi Y; Chen F
    Bioresour Technol; 2021 Nov; 340():125736. PubMed ID: 34426245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonic Treatment Enhanced Astaxanthin Production of Haematococcus pluvialis.
    Park YH; Park J; Choi JS; Kim HS; Choi JS; Choi YE
    J Microbiol; 2023 Jun; 61(6):633-639. PubMed ID: 37310559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Techno-economic analysis of a new downstream process for the production of astaxanthin from the microalgae Haematococcus pluvialis.
    Bauer A; Minceva M
    Bioresour Bioprocess; 2021 Nov; 8(1):111. PubMed ID: 38650201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Productivity of Astaxanthin from Photosensitive
    Lee KH; Chun Y; Lee JH; Park C; Yoo HY; Kwak HS
    Mar Drugs; 2022 Mar; 20(4):. PubMed ID: 35447893
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.