These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 34954531)
1. An on-line detection system for screening small molecule inhibitors of α-Amylase and α-Glucosidase in Prunus mume. Nan X; Jia W; Zhang Y; Wang H; Lin Z; Chen S J Chromatogr A; 2022 Jan; 1663():462754. PubMed ID: 34954531 [TBL] [Abstract][Full Text] [Related]
2. Screening for potential α-glucosidase and α-amylase inhibitory constituents from selected Vietnamese plants used to treat type 2 diabetes. Trinh BTD; Staerk D; Jäger AK J Ethnopharmacol; 2016 Jun; 186():189-195. PubMed ID: 27041401 [TBL] [Abstract][Full Text] [Related]
3. Zheng PF; Xiong Z; Liao CY; Zhang X; Feng M; Wu XZ; Lin J; Lei LS; Zhang YC; Wang SH; Xu XT J Enzyme Inhib Med Chem; 2021 Dec; 36(1):1938-1951. PubMed ID: 34459690 [TBL] [Abstract][Full Text] [Related]
4. GC-MS Metabolic Profile and α-Glucosidase-, α-Amylase-, Lipase-, and Acetylcholinesterase-Inhibitory Activities of Eight Peach Varieties. Mihaylova D; Desseva I; Popova A; Dincheva I; Vrancheva R; Lante A; Krastanov A Molecules; 2021 Jul; 26(14):. PubMed ID: 34299456 [TBL] [Abstract][Full Text] [Related]
5. The effects of bioactive compounds from blueberry and blackcurrant powders on the inhibitory activities of oat bran pastes against α-amylase and α-glucosidase linked to type 2 diabetes. Hui X; Wu G; Han D; Stipkovits L; Wu X; Tang S; Brennan MA; Brennan CS Food Res Int; 2020 Dec; 138(Pt A):109756. PubMed ID: 33292939 [TBL] [Abstract][Full Text] [Related]
6. Hesperetin-Cu(II) complex as potential α-amylase and α-glucosidase inhibitor: Inhibition mechanism and molecular docking. Peng X; Liu K; Hu X; Gong D; Zhang G Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 290():122301. PubMed ID: 36603279 [TBL] [Abstract][Full Text] [Related]
7. Chemical profiling of secondary metabolites from Himatanthus drasticus (Mart.) Plumel latex with inhibitory action against the enzymes α-amylase and α-glucosidase: In vitro and in silico assays. Morais FS; Canuto KM; Ribeiro PRV; Silva AB; Pessoa ODL; Freitas CDT; Alencar NMN; Oliveira AC; Ramos MV J Ethnopharmacol; 2020 May; 253():112644. PubMed ID: 32058007 [TBL] [Abstract][Full Text] [Related]
8. Screening alpha-glucosidase and alpha-amylase inhibitors from natural compounds by molecular docking in silico. Jhong CH; Riyaphan J; Lin SH; Chia YC; Weng CF Biofactors; 2015; 41(4):242-51. PubMed ID: 26154585 [TBL] [Abstract][Full Text] [Related]
9. Rational in silico design of novel α-glucosidase inhibitory peptides and in vitro evaluation of promising candidates. Ibrahim MA; Bester MJ; Neitz AW; Gaspar ARM Biomed Pharmacother; 2018 Nov; 107():234-242. PubMed ID: 30096627 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of α-glucosidase and α-amylase by herbal compounds for the treatment of type 2 diabetes: A validation of in silico reverse docking with in vitro enzyme assays. Tolmie M; Bester MJ; Apostolides Z J Diabetes; 2021 Oct; 13(10):779-791. PubMed ID: 33550683 [TBL] [Abstract][Full Text] [Related]
11. Inhibition Mechanism of α-Amylase/α-Glucosidase by Silibinin, Its Synergism with Acarbose, and the Effect of Milk Proteins. Yang J; Li H; Wang X; Zhang C; Feng G; Peng X J Agric Food Chem; 2021 Sep; 69(36):10515-10526. PubMed ID: 34463509 [TBL] [Abstract][Full Text] [Related]
12. Novel cinnamic acid magnolol derivatives as potent α-glucosidase and α-amylase inhibitors: Synthesis, in vitro and in silico studies. Hu CM; Wang WJ; Ye YN; Kang Y; Lin J; Wu PP; Li DL; Bai LP; Xu XT; Li BQ; Zhang K Bioorg Chem; 2021 Nov; 116():105291. PubMed ID: 34438122 [TBL] [Abstract][Full Text] [Related]
13. Exploration of Diosmin to Control Diabetes and Its Complications-an In Vitro and In Silico Approach. Dubey K; Dubey R; Gupta R; Gupta A Curr Comput Aided Drug Des; 2021; 17(2):307-313. PubMed ID: 32208122 [TBL] [Abstract][Full Text] [Related]
14. Potential anti-diabetic properties of Merlot grape pomace extract: An in vitro, in silico and in vivo study of α-amylase and α-glucosidase inhibition. Kato-Schwartz CG; Corrêa RCG; de Souza Lima D; de Sá-Nakanishi AB; de Almeida Gonçalves G; Seixas FAV; Haminiuk CWI; Barros L; Ferreira ICFR; Bracht A; Peralta RM Food Res Int; 2020 Nov; 137():109462. PubMed ID: 33233136 [TBL] [Abstract][Full Text] [Related]
15. Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment. Sabiu S; O'Neill FH; Ashafa AOT J Ethnopharmacol; 2016 May; 183():1-8. PubMed ID: 26902829 [TBL] [Abstract][Full Text] [Related]
16. The multi-targets integrated fingerprinting for screening anti-diabetic compounds from a Chinese medicine Jinqi Jiangtang Tablet. Chang YX; Ge AH; Donnapee S; Li J; Bai Y; Liu J; He J; Yang X; Song LJ; Zhang BL; Gao XM J Ethnopharmacol; 2015 Apr; 164():210-22. PubMed ID: 25698248 [TBL] [Abstract][Full Text] [Related]
17. The inhibitory mechanism of chlorogenic acid and its acylated derivatives on α-amylase and α-glucosidase. Wang S; Li Y; Huang D; Chen S; Xia Y; Zhu S Food Chem; 2022 Mar; 372():131334. PubMed ID: 34638063 [TBL] [Abstract][Full Text] [Related]