These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34954623)

  • 1. SurgiNet: Pyramid Attention Aggregation and Class-wise Self-Distillation for Surgical Instrument Segmentation.
    Ni ZL; Zhou XH; Wang GA; Yue WQ; Li Z; Bian GB; Hou ZG
    Med Image Anal; 2022 Feb; 76():102310. PubMed ID: 34954623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A lightweight segmentation network for endoscopic surgical instruments based on edge refinement and efficient self-attention.
    Zhou M; Han X; Liu Z; Chen Y; Sun L
    PeerJ Comput Sci; 2023; 9():e1746. PubMed ID: 38259682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Space Squeeze Reasoning and Low-Rank Bilinear Feature Fusion for Surgical Image Segmentation.
    Ni ZL; Bian GB; Li Z; Zhou XH; Li RQ; Hou ZG
    IEEE J Biomed Health Inform; 2022 Jul; 26(7):3209-3217. PubMed ID: 35226612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An attention-guided network for surgical instrument segmentation from endoscopic images.
    Yang L; Gu Y; Bian G; Liu Y
    Comput Biol Med; 2022 Dec; 151(Pt A):106216. PubMed ID: 36356389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Level and Multi-Scale Feature Aggregation Network for Semantic Segmentation in Vehicle-Mounted Scenes.
    Liao Y; Liu Q
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34065155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CGBA-Net: context-guided bidirectional attention network for surgical instrument segmentation.
    Wang Y; Hu Y; Shen J; Zhang X; Li H; Qiu Z; Ye F; Liu J
    Int J Comput Assist Radiol Surg; 2023 Oct; 18(10):1769-1781. PubMed ID: 37199827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MFF-Net: Multiscale feature fusion semantic segmentation network for intracranial surgical instruments.
    Liu Z; Zheng L; Yang S; Zhong Z; Zhang G
    Int J Med Robot; 2023 Nov; ():e2595. PubMed ID: 37932905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A parallel network utilizing local features and global representations for segmentation of surgical instruments.
    Sun X; Zou Y; Wang S; Su H; Guan B
    Int J Comput Assist Radiol Surg; 2022 Oct; 17(10):1903-1913. PubMed ID: 35680692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surgical instrument segmentation based on multi-scale and multi-level feature network.
    Wang Y; Qiu Z; Hu Y; Chen H; Ye F; Liu J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2672-2675. PubMed ID: 34891802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RASNet: Segmentation for Tracking Surgical Instruments in Surgical Videos Using Refined Attention Segmentation Network.
    Ni ZL; Bian GB; Xie XL; Hou ZG; Zhou XH; Zhou YJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5735-5738. PubMed ID: 31947155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Branch Aggregation Attention Network for Robotic Surgical Instrument Segmentation.
    Shen W; Wang Y; Liu M; Wang J; Ding R; Zhang Z; Meijering E
    IEEE Trans Med Imaging; 2023 Nov; 42(11):3408-3419. PubMed ID: 37342952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MISSU: 3D Medical Image Segmentation via Self-Distilling TransUNet.
    Wang N; Lin S; Li X; Li K; Shen Y; Gao Y; Ma L
    IEEE Trans Med Imaging; 2023 Sep; 42(9):2740-2750. PubMed ID: 37018113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MFEAFN: Multi-scale feature enhanced adaptive fusion network for image semantic segmentation.
    Li S; Wan L; Tang L; Zhang Z
    PLoS One; 2022; 17(9):e0274249. PubMed ID: 36178906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Privacy-Preserving Synthetic Continual Semantic Segmentation for Robotic Surgery.
    Xu M; Islam M; Bai L; Ren H
    IEEE Trans Med Imaging; 2024 Jun; 43(6):2291-2302. PubMed ID: 38381643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MSKD: Structured knowledge distillation for efficient medical image segmentation.
    Zhao L; Qian X; Guo Y; Song J; Hou J; Gong J
    Comput Biol Med; 2023 Sep; 164():107284. PubMed ID: 37572439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weakly supervised semantic segmentation of histological tissue via attention accumulation and pixel-level contrast learning.
    Han Y; Cheng L; Huang G; Zhong G; Li J; Yuan X; Liu H; Li J; Zhou J; Cai M
    Phys Med Biol; 2023 Feb; 68(4):. PubMed ID: 36577142
    [No Abstract]   [Full Text] [Related]  

  • 17. Fast instruments and tissues segmentation of micro-neurosurgical scene using high correlative non-local network.
    Luo YW; Chen HY; Li Z; Liu WP; Wang K; Zhang L; Fu P; Yue WQ; Bian GB
    Comput Biol Med; 2023 Feb; 153():106531. PubMed ID: 36638619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semantic Segmentation Using Pixel-Wise Adaptive Label Smoothing via Self-Knowledge Distillation for Limited Labeling Data.
    Park S; Kim J; Heo YS
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. InstrumentNet: An integrated model for real-time segmentation of intracranial surgical instruments.
    Liu Z; Zheng L; Gu L; Yang S; Zhong Z; Zhang G
    Comput Biol Med; 2023 Nov; 166():107565. PubMed ID: 37839219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RFPNet: Reorganizing feature pyramid networks for medical image segmentation.
    Wang Z; Zhu J; Fu S; Mao S; Ye Y
    Comput Biol Med; 2023 Sep; 163():107108. PubMed ID: 37321104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.