These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2645 related articles for article (PubMed ID: 34954845)
1. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness. Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845 [TBL] [Abstract][Full Text] [Related]
2. Pediatric evaluations for deep learning CT denoising. Nelson BJ; Kc P; Badal A; Jiang L; Masters SC; Zeng R Med Phys; 2024 Feb; 51(2):978-990. PubMed ID: 38127330 [TBL] [Abstract][Full Text] [Related]
3. Image quality evaluation in deep-learning-based CT noise reduction using virtual imaging trial methods: Contrast-dependent spatial resolution. Zhou Z; Gong H; Hsieh S; McCollough CH; Yu L Med Phys; 2024 Aug; 51(8):5399-5413. PubMed ID: 38555876 [TBL] [Abstract][Full Text] [Related]
4. A performance comparison of convolutional neural network-based image denoising methods: The effect of loss functions on low-dose CT images. Kim B; Han M; Shim H; Baek J Med Phys; 2019 Sep; 46(9):3906-3923. PubMed ID: 31306488 [TBL] [Abstract][Full Text] [Related]
5. Learning low-dose CT degradation from unpaired data with flow-based model. Liu X; Liang X; Deng L; Tan S; Xie Y Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375 [TBL] [Abstract][Full Text] [Related]
6. Dose reduction and image enhancement in micro-CT using deep learning. Muller FM; Maebe J; Vanhove C; Vandenberghe S Med Phys; 2023 Sep; 50(9):5643-5656. PubMed ID: 36994779 [TBL] [Abstract][Full Text] [Related]
7. Low-Dose Abdominal CT Using a Deep Learning-Based Denoising Algorithm: A Comparison with CT Reconstructed with Filtered Back Projection or Iterative Reconstruction Algorithm. Shin YJ; Chang W; Ye JC; Kang E; Oh DY; Lee YJ; Park JH; Kim YH Korean J Radiol; 2020 Mar; 21(3):356-364. PubMed ID: 32090528 [TBL] [Abstract][Full Text] [Related]
8. Probabilistic self-learning framework for low-dose CT denoising. Bai T; Wang B; Nguyen D; Jiang S Med Phys; 2021 May; 48(5):2258-2270. PubMed ID: 33621348 [TBL] [Abstract][Full Text] [Related]
9. Deep learning-based low-dose CT simulator for non-linear reconstruction methods. Tunissen SAM; Moriakov N; Mikerov M; Smit EJ; Sechopoulos I; Teuwen J Med Phys; 2024 Sep; 51(9):6046-6060. PubMed ID: 38843540 [TBL] [Abstract][Full Text] [Related]
10. Evaluating a Convolutional Neural Network Noise Reduction Method When Applied to CT Images Reconstructed Differently Than Training Data. Huber NR; Missert AD; Yu L; Leng S; McCollough CH J Comput Assist Tomogr; 2021 Jul-Aug 01; 45(4):544-551. PubMed ID: 34519453 [TBL] [Abstract][Full Text] [Related]
11. Patient-derived PixelPrint phantoms for evaluating clinical imaging performance of a deep learning CT reconstruction algorithm. Im JY; Halliburton SS; Mei K; Perkins AE; Wong E; Roshkovan L; Sandvold OF; Liu LP; Gang GJ; Noël PB Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38604190 [No Abstract] [Full Text] [Related]
12. Unpaired low-dose computed tomography image denoising using a progressive cyclical convolutional neural network. Li Q; Li R; Li S; Wang T; Cheng Y; Zhang S; Wu W; Zhao J; Qiang Y; Wang L Med Phys; 2024 Feb; 51(2):1289-1312. PubMed ID: 36841936 [TBL] [Abstract][Full Text] [Related]
13. Deep Learning Reconstruction at CT: Phantom Study of the Image Characteristics. Higaki T; Nakamura Y; Zhou J; Yu Z; Nemoto T; Tatsugami F; Awai K Acad Radiol; 2020 Jan; 27(1):82-87. PubMed ID: 31818389 [TBL] [Abstract][Full Text] [Related]
14. Synthesizing images from multiple kernels using a deep convolutional neural network. Missert AD; Yu L; Leng S; Fletcher JG; McCollough CH Med Phys; 2020 Feb; 47(2):422-430. PubMed ID: 31714999 [TBL] [Abstract][Full Text] [Related]
15. An unsupervised two-step training framework for low-dose computed tomography denoising. Kim W; Lee J; Choi JH Med Phys; 2024 Feb; 51(2):1127-1144. PubMed ID: 37432026 [TBL] [Abstract][Full Text] [Related]
16. Deep learning-based denoising algorithm in comparison to iterative reconstruction and filtered back projection: a 12-reader phantom study. Kim Y; Oh DY; Chang W; Kang E; Ye JC; Lee K; Kim HY; Kim YH; Park JH; Lee YJ; Lee KH Eur Radiol; 2021 Nov; 31(11):8755-8764. PubMed ID: 33885958 [TBL] [Abstract][Full Text] [Related]
17. Reducing CT radiation dose with iterative reconstruction algorithms: the influence of scan and reconstruction parameters on image quality and CTDIvol. Klink T; Obmann V; Heverhagen J; Stork A; Adam G; Begemann P Eur J Radiol; 2014 Sep; 83(9):1645-54. PubMed ID: 25037931 [TBL] [Abstract][Full Text] [Related]
18. A systematic task-based image quality assessment of photon-counting and energy integrating CT as a function of reconstruction kernel and phantom size. Bhattarai M; Bache S; Abadi E; Samei E Med Phys; 2024 Feb; 51(2):1047-1060. PubMed ID: 37469179 [TBL] [Abstract][Full Text] [Related]
19. Image denoising by transfer learning of generative adversarial network for dental CT. Hegazy MAA; Cho MH; Lee SY Biomed Phys Eng Express; 2020 Sep; 6(5):055024. PubMed ID: 33444255 [TBL] [Abstract][Full Text] [Related]
20. Noise reduction in CT image using prior knowledge aware iterative denoising. Tao S; Rajendran K; Zhou W; Fletcher JG; McCollough CH; Leng S Phys Med Biol; 2020 Nov; 65(22):. PubMed ID: 33065559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]