BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 34955015)

  • 21. Versatile Rh- and Ir-Based Catalysts for CO
    Fidalgo J; Ruiz-Castañeda M; García-Herbosa G; Carbayo A; Jalón FA; Rodríguez AM; Manzano BR; Espino G
    Inorg Chem; 2018 Nov; 57(22):14186-14198. PubMed ID: 30395446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly active catalysts for the transfer dehydrogenation of alkanes: synthesis and application of novel 7-6-7 ring-based pincer iridium complexes.
    Shi Y; Suguri T; Dohi C; Yamada H; Kojima S; Yamamoto Y
    Chemistry; 2013 Aug; 19(32):10672-89. PubMed ID: 23794532
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selective Hydrogen Generation from Formic Acid with Well-Defined Complexes of Ruthenium and Phosphorus-Nitrogen PN(3) -Pincer Ligand.
    Pan Y; Pan CL; Zhang Y; Li H; Min S; Guo X; Zheng B; Chen H; Anders A; Lai Z; Zheng J; Huang KW
    Chem Asian J; 2016 May; 11(9):1357-60. PubMed ID: 27101381
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis, Structure, and Reactivity of Co(II) and Ni(II) PCP Pincer Borohydride Complexes.
    Murugesan S; Stöger B; Weil M; Veiros LF; Kirchner K
    Organometallics; 2015 Apr; 34(7):1364-1372. PubMed ID: 27642212
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrogen Activation with Ru-PN
    Morton MD; Tay BY; Mah JJQ; White AJP; Nobbs JD; van Meurs M; Britovsek GJP
    Inorg Chem; 2024 Feb; 63(7):3393-3401. PubMed ID: 38330919
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nickel and iron pincer complexes as catalysts for the reduction of carbonyl compounds.
    Chakraborty S; Bhattacharya P; Dai H; Guan H
    Acc Chem Res; 2015 Jul; 48(7):1995-2003. PubMed ID: 26098431
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemistry of ruthenium(II) monohydride and dihydride complexes containing pyridyl donor ligands including catalytic ketone H2-hydrogenation.
    Abdur-Rashid K; Abbel R; Hadzovic A; Lough AJ; Morris RH
    Inorg Chem; 2005 Apr; 44(7):2483-92. PubMed ID: 15792487
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of ancillary ligands in selectivity towards acceptorless dehydrogenation
    Singh RK; Yadav D; Misra S; Singh AK
    Dalton Trans; 2023 Nov; 52(43):15878-15895. PubMed ID: 37830304
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unravelling the Mechanism of Basic Aqueous Methanol Dehydrogenation Catalyzed by Ru-PNP Pincer Complexes.
    Alberico E; Lennox AJ; Vogt LK; Jiao H; Baumann W; Drexler HJ; Nielsen M; Spannenberg A; Checinski MP; Junge H; Beller M
    J Am Chem Soc; 2016 Nov; 138(45):14890-14904. PubMed ID: 27759392
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interconversion between formic acid and H(2)/CO(2) using rhodium and ruthenium catalysts for CO(2) fixation and H(2) storage.
    Himeda Y; Miyazawa S; Hirose T
    ChemSusChem; 2011 Apr; 4(4):487-93. PubMed ID: 21271682
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrogen Production from Formic Acid and Formaldehyde over Ruthenium Catalysts in Water.
    Patra S; Singh SK
    Inorg Chem; 2020 Apr; 59(7):4234-4243. PubMed ID: 32207936
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temperature and Solvent Effects on H
    Hu J; Bruch QJ; Miller AJM
    J Am Chem Soc; 2021 Jan; 143(2):945-954. PubMed ID: 33383987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unsymmetrical Iron P-NH-P' Catalysts for the Asymmetric Pressure Hydrogenation of Aryl Ketones.
    Smith SAM; Lagaditis PO; Lüpke A; Lough AJ; Morris RH
    Chemistry; 2017 May; 23(30):7212-7216. PubMed ID: 28324643
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dehydrogenation, disproportionation and transfer hydrogenation reactions of formic acid catalyzed by molybdenum hydride compounds.
    Neary MC; Parkin G
    Chem Sci; 2015 Mar; 6(3):1859-1865. PubMed ID: 29308136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions.
    Chelucci G; Baldino S; Baratta W
    Acc Chem Res; 2015 Feb; 48(2):363-79. PubMed ID: 25650714
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pincer-type Heck catalysts and mechanisms based on Pd(IV) intermediates: a computational study.
    Blacque O; Frech CM
    Chemistry; 2010 Feb; 16(5):1521-31. PubMed ID: 20024984
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly effective pincer-ligated iridium catalysts for alkane dehydrogenation. DFT calculations of relevant thermodynamic, kinetic, and spectroscopic properties.
    Zhu K; Achord PD; Zhang X; Krogh-Jespersen K; Goldman AS
    J Am Chem Soc; 2004 Oct; 126(40):13044-53. PubMed ID: 15469303
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lewis acid-assisted formic acid dehydrogenation using a pincer-supported iron catalyst.
    Bielinski EA; Lagaditis PO; Zhang Y; Mercado BQ; Würtele C; Bernskoetter WH; Hazari N; Schneider S
    J Am Chem Soc; 2014 Jul; 136(29):10234-7. PubMed ID: 24999607
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regio- and stereo-selective polymerization of 1,3-butadiene catalyzed by phosphorus-nitrogen PN
    Gong D; Zhang X; Huang KW
    Dalton Trans; 2016 Dec; 45(48):19399-19407. PubMed ID: 27882369
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Iron borohydride pincer complexes for the efficient hydrogenation of ketones under mild, base-free conditions: synthesis and mechanistic insight.
    Langer R; Iron MA; Konstantinovski L; Diskin-Posner Y; Leitus G; Ben-David Y; Milstein D
    Chemistry; 2012 Jun; 18(23):7196-209. PubMed ID: 22532294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.