BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34955198)

  • 21. Immobilization of phosphorus in sediments by nano zero-valent iron (nZVI) from the view of mineral composition.
    Li X; Huang L; Fang H; He G; Reible D; Wang C
    Sci Total Environ; 2019 Dec; 694():133695. PubMed ID: 31400671
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of industrial by-products as amendments to stabilize antimony mine wastes.
    Álvarez-Ayuso E; Murciego A
    J Environ Manage; 2023 Oct; 343():118218. PubMed ID: 37247551
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fate of As(V)-treated nano zero-valent iron: determination of arsenic desorption potential under varying environmental conditions by phosphate extraction.
    Dong H; Guan X; Lo IM
    Water Res; 2012 Sep; 46(13):4071-80. PubMed ID: 22673340
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnetic nanocomposite microbial extracellular polymeric substances@Fe
    Yang J; Zhou L; Ma F; Zhao H; Deng F; Pi S; Tang A; Li A
    Environ Res; 2020 Oct; 189():109950. PubMed ID: 32980022
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acidity-dependent mobilization of antimony and arsenic in sediments near a mining area.
    Zhang D; Guo J; Xie X; Zhang Y; Jing C
    J Hazard Mater; 2022 Mar; 426():127790. PubMed ID: 34802819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrated remediation of sulfate reducing bacteria and nano zero valent iron on cadmium contaminated sediments.
    Zhao Q; Li X; Xiao S; Peng W; Fan W
    J Hazard Mater; 2021 Mar; 406():124680. PubMed ID: 33310329
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of nano-scale zero-valent iron-reduced graphene oxide-silica nano-composites for the efficient removal of arsenic from aqueous solutions.
    Liu P; Liang Q; Luo H; Fang W; Geng J
    Environ Sci Pollut Res Int; 2019 Nov; 26(32):33507-33516. PubMed ID: 31529346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A collaborative strategy for elevated reduction and immobilization of Cr(VI) using nano zero valent iron assisted by schwertmannite: Removal performance and mechanism.
    Xie Y; Lu G; Tao X; Wen Z; Dang Z
    J Hazard Mater; 2022 Jan; 422():126952. PubMed ID: 34449341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impacts of Arsenic and Antimony Co-Contamination on Sedimentary Microbial Communities in Rivers with Different Pollution Gradients.
    Sun X; Li B; Han F; Xiao E; Xiao T; Sun W
    Microb Ecol; 2019 Oct; 78(3):589-602. PubMed ID: 30725170
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of polycyclic aromatic hydrocarbons from sediments using sodium persulfate activated by temperature and nanoscale zero-valent iron.
    Chen CF; Binh NT; Chen CW; Dong CD
    J Air Waste Manag Assoc; 2015 Apr; 65(4):375-83. PubMed ID: 25947207
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simulation of antimony adsorption on nano-zero valent iron and kaolinite and analyzing the influencing parameters.
    Saeidnia S; Asadollahfardi G; Darban AK; Mohseni M
    Water Sci Technol; 2016; 73(10):2493-500. PubMed ID: 27191572
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective pressure of arsenic and antimony co-contamination on microbial community in alkaline sediments.
    Zhang M; Xiong Y; Sun H; Xiao T; Xiao E; Sun X; Li B; Sun W
    J Hazard Mater; 2024 Feb; 464():132948. PubMed ID: 37984136
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effective adsorbent for arsenic removal: core/shell structural nano zero-valent iron/manganese oxide.
    Bui TH; Kim C; Hong SP; Yoon J
    Environ Sci Pollut Res Int; 2017 Nov; 24(31):24235-24242. PubMed ID: 28889227
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Removal of Antimony(V) from Drinking Water Using nZVI/AC: Optimization of Batch and Fix Bed Conditions.
    Zhu H; Huang Q; Fu S; Zhang X; Yang Z; Lu J; Liu B; Shi M; Zhang J; Wen X; Li J
    Toxics; 2021 Oct; 9(10):. PubMed ID: 34678962
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Zeolite-supported nanoscale zero-valent iron for immobilization of cadmium, lead, and arsenic in farmland soils: Encapsulation mechanisms and indigenous microbial responses.
    Li Z; Wang L; Wu J; Xu Y; Wang F; Tang X; Xu J; Ok YS; Meng J; Liu X
    Environ Pollut; 2020 May; 260():114098. PubMed ID: 32041084
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Study on the precipitation of iron and the synchronous removal mechanisms of antimony and arsenic in the AMD under the induction of carbonate rocks.
    Zhang S; Zhang R; Wu P; Zhang Y; Fu Y; An L; Zhang Y
    Environ Sci Pollut Res Int; 2022 Aug; 29(36):55161-55173. PubMed ID: 35316491
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface-mediated periodate activation by nano zero-valent iron for the enhanced abatement of organic contaminants.
    Zong Y; Zhang H; Shao Y; Ji W; Zeng Y; Xu L; Wu D
    J Hazard Mater; 2022 Feb; 423(Pt A):126991. PubMed ID: 34482081
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Degradation of chlorinated organic solvents in aqueous percarbonate system using zeolite supported nano zero valent iron (Z-nZVI) composite.
    Danish M; Gu X; Lu S; Naqvi M
    Environ Sci Pollut Res Int; 2016 Jul; 23(13):13298-307. PubMed ID: 27023817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneous stabilization of arsenic and antimony co-contaminated mining soil by Fe(Ⅱ) activated-Fenton sludge: Behavior and mechanisms.
    Zhang Y; Hou Z; Fu P; Wang X; Xue T; Chen Y
    Environ Pollut; 2023 Nov; 337():122538. PubMed ID: 37709119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immobilization of cadmium in contaminated soils using sulfidated nanoscale zero-valent iron: Effectiveness and remediation mechanism.
    Guo Y; Li X; Liang L; Lin Z; Su X; Zhang W
    J Hazard Mater; 2021 Oct; 420():126605. PubMed ID: 34329110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.